On Ultrasmall Silicate Graines in the Diffuse Interstellar Medium

Li,A., Draine,B.T.	2001, ApJ, 550, L213–L217
1. イントロ	
星間シリケートグレイン	
Kamijo 1963: 低温度星大気中でSiO2が	凝結して星間空間に吹き飛ばされ、そこでダーティアイス
の核となる。	
Gilman 1969: M型星大気では Al2SiO3やMg2SiO3のようなシリケート	
シリケート放射帯の観測	
Woolf∕Ney 1969, Knacke etal 197	O: M型星
Stein, Gillett 1969: トラペジウム	
Maas, Ney, Woolf 1970:ベネット彗星	
Hackwell, Gehrz, Woolf 1970: 銀河中心	心吸収
Gillett, Forrest 1973: BN, KL 吸収	
幅広で無構造の10µ バンドーー> 非晶質?	
結晶シリケート:彗星、主系列星円盤、YSO、B	免期型星(Waelkens et al 2000サマリー)、IPD、オ
リオン	
もし 超微小(a<15A)シリケートダスト が存	在すれば、単一光子加熱(Greenberg 1968)で10µ
放射	
Desert et al 1986 : IRASに10µ 放射	がないから、a<15Aシリケートの量は1%以下。
Mattila et al 1996 ISOで検出せず	
Onaka et al 1996 IRTSでも	
――> 最近のダストモデルでは超微小シリケ	ートは無視する。
Duley, Jones, Williams 1989	
Desert, Boulanger, Puget 1990	
Siebebmorgen, Krugel 1992	
Mathis 1996	
Li, Greenberg 1997	
Dwek et al 1997	
Weingartner, Draine 2001	
Li, Draine 2001	
しかし、PAH放射で隠れているかも知れない。	――>この論文では定量的に評価をする。
2. シリケートの光学	
屈折率 m(λ)=m'(λ)+i•m"(λ)	

非晶質 Draine/Lee 1984

結晶 Huffman/Stapp 1973 オリビン(Mg, Fe)2SiO4の m"(λ <0.3μ) Draine, Lee 1984 Astronomical Silicate 0.3μ <λ <6μ Mukai, Koike 1990 オリビン Mg1.8Fe0.2SiO4 7μ <λ <200μ m["](λ)=m["](λ =200μ)・(200μ /λ) 仮定 m['](λ)はKramers-Kronig関係から出す。 非熱 非晶質: Draine. Li 2001 結晶: Θ=720Kのデバイモデル を採用(Draine. Li 2001) Robie et al 1982の実験に合う

3. 超微小シリケート粒子の上限
3.1. 赤外放射
観測 I=44°20'、b=−0°20'
DIRBE
IRTS 4.7-11.7µ スペクトル

この方向のIR輻射モデル Li/Draine 2001 N_H=4. 3·1022cm⁻²

図1 I=44°20'、b=-0°20'方向スペクトル

◇=DIRBE 太い実線=MIRS/IRTS 細い実線=Li/Draine2001 モデル Bcarb=a>250Aの炭素質ダスト、Bsil=a>250Aのシリケートダスト Scarb=a<250Aの炭素質ダスト、Ssil=a<250Aのシリケートダスト Stellar=Mathis et al 1983のχ =2倍の星輻射

モデルに対しては、ダストの総放射が χ ・NHに制限を、 λ peakが χ を制限する。

単一半径モデル

シリコン(Si/H=36・10⁻⁶)のYsi(a)が半径aの非晶質シリケート粒子に含まれると仮定。 Draine/Li2001の thermal discrete 法でスペクトルを計算する。 計算では各aに対し、放射がどの波長でも観測を超えないようにYsiを選んだ。 a<10Aダストは高温になるので10µ バンドを放射するので、IRTSが制限を加える。――>Ysi<25% a>10Aでは放射ピークが長波長に移り、DIRBEの20µ 観測が制限になる。

-> 10A<a<20A Ysi<30% 20A<a<25A Ysi<40%

星間結晶シリケートは上のサンプルとは異なるだろう。 Jager 1998 : 他の鉱物

3.2. 紫外減光曲線

Weingartner, Draine 2001, Li・Draine 2001: 紫外から赤外の減光曲線を再現するモデル。 超微小(a<15A) シリケートの量はY=1.3%

図3 平均減光曲線の比較

〇=Mathis 1990、 点線=Fitzpatrick 1999,
実線=モデル(Ysi=1.3%が推薦) 他の実線は超微小シリケート付加
破線=ダスト各成分の寄与: Bsil=a>250Aシリケート、Bcarb=a>250A炭素質
Ssil=a<250Aシリケート、Scarb=a<250A炭素質(含PAH)

WD2001, LD2001に超微小シリケートを足して比べたのが図3である。レーリーリミットなので、半径 は関係なく、また

同じmを使うので、結晶かどうかも関係ない。

超微小シリケートのλ ⁻¹>7μ ⁻¹での寄与はかなりである。

λ⁻¹=6.5でm"が急に大きくなるため。 Hoffman Stapp 1973, 非晶質オリビンも。 Scott/Duley 1996 λ⁻¹=6.5-7.0で観測減光曲線に急な変化が見えないので、a<100Aシリケート粒子の成分は
Δ Ysil<10%

それでも可視、赤外には効かない。

ーー>するとM型星ではどうなるか?Bsilでもλ >1μ ではすごく小さいぞ。

3.3. シリケート吸収プロファイル

図4 10µ 吸収帯の比較

実線=Li/Draine 2001炭素質+非晶質シリケートモデル + 結晶シリケート ー点鎖線=非晶質シリケート(モデル)のみ 下の実線=結晶シリケートの寄与

エラー付き実線=CygOB2#12 Bowey et al1998

観測吸収曲線の10.0,11.1μ mに細い構造は見えない。--> Δ YsiK3% この制限はUVより厳しい。

4. サマリー