B. T. Draine, Aigen Li

2007, Ap. J. 657, 810-837

1. イントロ

図1 SpitzerスペクトルとU=1,10⁵に対する $q_{PAH}=4.6\%$ のモデルスペクトル

これまで提案されたダストモデル

- (1) シリケート・グラファイト、シリケート・グラファイト・PAHモデル
 Mathis et al 1977, Draine.Lee 1984, Kim et al 1994
 Siebenmorgen,Krugel 1992, Li,Draine 2001, Weingartner,Draine 2001
- (2) シリケートコア+炭素質マントル

Desert et al 1990, Jones et al 1990, Li, Greenberg 1997

9.7µ mバンドが偏光しているのに、3.4µ m脂肪族バンドの偏光がない点が問題。

(3) 合成モデル=炭素質、シリケート微粒子の低密度集合体

Mathis, Whiffen 1989, Mathis 1996, Zubko et al 2004

Mathis,Whiffen モデル(80%が真空)ではFIR放射率がフラット過ぎる。(Draine 1994) 改良 Mathis モデル1996では真空率を45%に下げて、Cの有効利用を図ったが、Dwek1997は FIRで放射が強くなりすぎると指摘した。

ここでは(1)モデルを採用する。

「アストロPAH」の吸収率は Smith et al 2007 が求めた銀河の輻射と合致する。

PAHイオンの近赤外吸収率の実験室データ(Mattioda et al 2005 と Spitzer の新データからPAHの Cabsを更新して再計算した。

2. PAHの吸収断面積

Lorentz型: Boulanger et al 1998 これがNGC7023, p OhpのPAH放射にフィットする。 Drude型 : Lorentzと似ているが、こっちが古典的減衰振動子に期待される型なので採用。

$$\Delta C_{\rm abs}(\lambda) = N_{\rm C} \sum_{j=1}^{30} \frac{2}{\pi} \frac{\gamma_j \lambda_j \sigma_{\rm int,j}}{\left(\lambda/\lambda_j - \lambda_j/\lambda\right)^2 + \gamma_j^2}, \qquad (1)$$

 $\lambda_{j} = ピーク波長、 \gamma_{j}\lambda_{j} = FWHM、 \sigma_{int} = \int \sigma_{abs} d\lambda^{-1}$ (1) 電離PAHに対しては Mattioda et al 2005 に基づき、下の連続成分を加える。

 $\frac{\Delta C_{\rm abs}(\lambda)}{N_{\rm C}} = 3.5 \times 10^{-19 - 1.45/x} \exp\left(-0.1x^2\right) \,\rm{cm}^2 \qquad (2)$

 $x=(\lambda /\mu m)^{-1}$ 電離PAHは $\lambda < 0.8\mu$ mで強い吸収を仮定しているので

この付加項はλ <0.8µ mでは影響ゼロである。Exp(-0.1x^2)は長波長でゼロにしただけ。 (2) 電離PAHの近赤外補正

λ =1. 05、1. 26μ mの共鳴、 1. 8-2. 0μ mで負吸収(ここでの吸収を抑えるため)

(3) 小さな変更 λ j=6. 20——>6. 22µ m γ j=0. 032——>0. 0284

11. 9—>11. 99μ m、 0. 025—>0. 050

12. 7—>12. 61 0. 024—>0. 0435

(4) 3. 3 μ m帯の $\sigma_{int} = \int \sigma_{abs} d\lambda^{-1}$ は中性PAHで1. 5倍、電離PAHで2倍にした。

- (5) 6. 22μ mのσ int はLD01の50%
- (6) 7.7µm=7.417+7.598+7.850に分解
- (7) 8. 6µ mのo int は8. 330と8. 610µ mに分ける
- (8) 11.3=11.23+11.3
- (9) 12. 7µ mのσ _{int}は0. 63倍
- (10) 5. 70, 6. 69, 13. 60, 14. 19, 15. 90, 18. 92µ mに弱いバンドを足す。
- (11) 5.25µ mの弱いバンドを足す。
- (12) 16.4は0.14倍
- (13) 17µ m=17.038+17.377+17.873を足す。
- (14) 21. 2と23. 1は実験室であったので表に載せたが、見つからないので削る。

```
(15) \lambda j=26, \gamma j=0.69, \sigma_{int}=18.10-20 \text{ cm/C}
```

 $->\lambda_{27}=15, \gamma_{27}=0.8, \sigma_{int}=50.10-20 \text{ cm/C}$

表1 PAHの共鳴パラメター

			$\sigma_{{ m int},j}\equiv\int\sigma_{{ m abs},j}d\lambda^{-1}$		
j	λ_j (μ m)	γ_j	Neutral (10 ⁻²⁰ cm/C)	Ionized (10 ⁻²⁰ cm/C)	TENTATIVE IDENTIFICATION
1	0.0722	0.195	$7.97 imes 10^7$	$7.97 imes 10^7$	$\sigma \to \sigma^*$ transition in aromatic C
2	0.2175	0.217	1.23×10^7	1.23×10^{7}	$\pi \rightarrow \pi^*$ transition in aromatic C
3	1.050	0.055	0	2.0×10^{4}	Weak electronic transition(s) in PAH cations
4	1.260	0.11	0	0.078	Weak electronic transition(s) in PAH cations
5	1.905	0.09	0	-146.5	?
6	3.300	0.012	394(H/C)	89.4(H/C)	Aromatic C-H stretch
7	5.270	0.034	2.5	20	C-H bend + C-H stretch combination mode
8	5.700	0.035	4	32	C-H bend + C-H stretch combination mode
9	6.220	0.030	29.4	235	Aromatic C-C stretch (in-plane)
10	6.690	0.070	7.35	59	?
11	7.417	0.126	20.8	181	Aromatic C-C stretch
12	7.598	0.044	18.1	163	Aromatic C-C stretch
13	7.850	0.053	21.9	197	C-C stretch + C-H bending
14	8.330	0.052	6.94(H/C)	48(H/C)	C-C stretch + $C-H$ bending?
15	8.610	0.039	27.8(H/C)	194(H/C)	C-H in-plane bending
16	10.68	0.020	0.3(H/C)	0.3(H/C)	C-H out-of-plane bending, solo?
17	11.23	0.012	18.9(H/C)	17.7(H/C)	C-H out-of-plane bending, solo
18	11.33	0.032	52(H/C)	49(H/C)	C-H out-of-plane bending, solo
19	11.99	0.045	24.2(H/C)	20.5(H/C)	C-H out-of-plane bending, duo
20	12.62	0.042	35(H/C)	31(H/C)	C-H out-of-plane bending, trio
21	12.69	0.013	1.3(H/C)	1.3(H/C)	C-H out-of-plane bending, trio
22	13.48	0.040	8.0(H/C)	8.0(H/C)	C-H out-of-plane bending, quartet?
23	14.19	0.025	0.45	0.45	C-H out-of-plane bending, quartet?
24	15.90	0.020	0.04	0.04	?
25	16.45	0.014	0.5	0.5	C-C-C bending?
26	17.04	0.065	2.22	2.22	C-C-C bending?
27	17.375	0.012	0.11	0.11	C-C-C bending?
28	17.87	0.016	0.067	0.067	C-C-C bending?
29	18.92	0.10	0.10	0.17	C-C-C bending?
30	15	0.8	50	50	

ρ (シリケート)=3.5 g/cm³、ρ (炭素質)=2.0 g/cm³

Nc(炭素質粒子中のC原子)=460・(a/10Å)³ 最小のPAHでNc=20 H∕C= 0.5 Nc<25

0. $5(25/Nc)_{1/2}$ 25<Nc<100 0. 25 100<Nc

上図ではCabsの計算があるいくつかのPAHに対してその平均値も横バーで示している。注目すべきは PAH間での値の幅の広さである。Lin/Drain2001 と同様に、C数が大きくなるとPAHからグラファイト的 に移行すると仮定した。

$$C_{\rm abs}(\lambda) = (1 - \xi_{\rm gra})C_{\rm abs}(\text{PAH}, N_{\rm C}) + \xi_{\rm gra}C_{\rm abs}(\text{graphite}, a), \quad \xi_{\rm gra} = 0.01 \text{ for } a \le 50 \text{ A} (\text{Nc} \le 5.75 \cdot 10^4)$$

$$\xi_{\rm gra} = 0.01 + 0.99 \left[1 - \left(\frac{50 \text{ Å}}{a} \right)^3 \right]$$

for a>50A

この様にする理由は、2-5µ mに連続放射があり、3. 3µ mバンドでは賄えない。 ——>a<50A でも1%グラファイト的にした。

図3 吸収断面積

左: 電離、中性PAH

右:電離炭素質粒子、グラファイト

グラファイト

λ >30μ

 $1\mu < \lambda < 20\mu$

面方向がランダムな球では、吸収は面方向に動く自由電子が担う。 平面伝導率が大き過ぎ、吸収は軸方向の小さい伝導率が担う。 自由電子の軸方向誘電率への寄与は30μ 吸収ピーク(Draine/Lee 1984)を産む。 その結果Td>100K では a>60A グラファイト粒子による30μ 放射バンド

3. ダストの加熱

輻射場を下のように仮定する: U=強度ファクター、 uMMP83=Mathisetal1983 の太陽近傍星 間輻射

$$u_{\nu} = U u_{\nu}^{\text{MMP83}},\tag{8}$$

<E(T)>= 温度Tで熱平衡の粒子の平均振動エネルギー T(E)=振動エネルギーがEの粒子に与える仮想温度 dP=φ(T)dT=粒子が温度Tである確率

粒径aが大の時: φ (T)= δ (T-Tss(a)) Tss(a)=粒子平衡温度 aが小の時: φ (T)=ストカスティックな加熱に伴う確率分布 Draine/Li 2001

図4 温度確率φ(T)=dP/dT 粒径大でデルタ関数的になる。 粒径小で高温側に伸びる。 Uが大きいと(右図)小さい(50A)粒子でも一定温度に落ち着く。

4. 単一粒子のスペクトル

図5 星間輻射場U<10⁴の時の、様々なサイズのPAH粒子平均放射スペクトル。左:中性、右:電離 p_{λ} は粒子の総(全方向)放出スペクトル $p_{\lambda} = \int 4\pi \cdot C_{abs}(\lambda) \cdot B_{\lambda}(T) \cdot \phi(T) dT$

$$p_{\lambda} = \int 4\pi \cdot C_{abs}(\lambda) \cdot B_{\lambda}(T) \cdot \phi(T) dt$$
$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{\lambda kT}\right) - 1}$$

図6 バンド放射の効率 左:中性PAH、右:電離PAH

図からはっきり分かるように、3. 3µ 帯はa<6µ が主体、一方12Aサイズは7. 7µ 帯に有効。 図5、図6 は a<30µ、U<10⁴ではUに無関係である。もっと大きい粒子でかつU大になると 放射スペクトルにUが効いてくる。例えば、λ >30µ でQ∝λ ⁻²の時、p=∫pdλ ∝T⁶で、 放射ピークλ p∝U^{-1/6}となる。

PAHの電離度はTgas, Ne, U(UV)で決まる。Lin/Draine2001

図7 冷たい、暖かい、電離域の電離バランスを平均し、中性、電離PAHを加算したバンド強度

図9,10には炭素質、非晶質粒子のスペクトルを示す。

予想される通り、λ peak =100 U^{-1/6}μ である。しかし、U=10⁶, 10⁷に対して a>60A 炭素質粒 子は二つピークを持つ:一つは100 U^{-1/6}μ 、もう一つは30μ でグラファイト起源である。これが星間ダ ストに適用可能か疑問。

5. 混合ダスト

Wingartner/Draine 2001 サイズ分布——>Rv=Av/E(B-V)=3.1再現可能 a<50Aの炭素質ダストが必要。

---->OnakaらがIRTSで観測した拡散スペクトルを再現できる。 WD01で与えたサイズ分布は、下の形: この論文ではパラメター値を少し変えた。

$$\frac{dn}{da} = \sum_{j=1}^{2} \frac{n_{0j}}{a} \exp\left\{-\frac{\left[\ln\left(a/a_{0j}\right)\right]^{2}}{2\sigma_{j}^{2}}\right\}$$

+ nonlognormal contribution,

(11)

Rv=3.1を再現するサイズ分布はいろいろあり、非常に小さいPAH粒子の量が異なる。

図11 炭素質(PAH?)ダストのサイズ分布

図12 それに対応した放射スペクトル

4nm付近のサイズ分布ピークは何?

H原子1個当たりの放射率 j は下の式で与えられる。 ——>12図 λ <20μ 放射はPAH量に大きく依存する。

$$j_{\nu}(U) = \sum_{j} \int da \, \frac{dn_{j}}{da} \int C_{abs}(j, a, \nu) B_{\nu}(T) \left(\frac{dP}{dT}\right)_{j, a, U} dT,$$

$$B_{\nu}(T) \equiv \frac{2h\nu^{3}}{c^{2}} \frac{1}{\exp(h\nu/kT) - 1},$$
(15)
(16)

図13 を見ると、U<10³ではλ <20μ スペクトルは同じ形なことが分かる。 PAH放射スペクトルのこの安定性は実際多くの観測で確認されている。

U>10⁴では、PAH粒子は冷却前に次の光を吸収し、Uと共に温度が上昇する。その結果、 λ <20μの放射の比重が増していく。

6. FIRとサブミリの放射

Finkbeiner et al 1999 COBE FIRASデータから、各点での100µ — 3mmスペクトルを次の式に まとめた、

$$I_{\nu} = I_{\nu_0} \frac{(\nu/\nu_0)^{2.70} B_{\nu}(T_2) + 0.515 (\nu/\nu_0)^{1.67} B_{\nu}(T_1)}{B_{\nu_0}(T_2) + 0.515 B_{\nu_0}(T_1)},$$

$$T_1 = 9.4 \text{ K} \left(\frac{T_2}{16.2 \text{ K}}\right)^{1.182},$$
 (17)

(17)のパラメターはIoとT2の二つである。平均<T2>=16.2K
 T2=16.2K・D_{FDS}^{1/6.70}とモデル化でき、D_{FDS}はFDS輻射強度に対する比

Draine/Lee1984 非晶質シリケートの誘電率虚数部を作成——>K-K関係から実数部 Lin/Draine2001 COBEデータに合うよう、Draine/Lee 1984 を λ >250 μ で手直し。 図14を見ると、D_{FDS}=1. 2Uで十分によくフィットできることが分かる。 つまり、単一温度で光学的に薄いモデルで十分ということか?

7. Spitzer IRAC と MIPSバンド比

$$\langle j_{\nu} \rangle_{\text{band}} \equiv \frac{\int R_{\text{band}}(\nu) j_{\nu} \, d\nu}{\int (\nu/\nu_{\text{band}})^{\beta} R_{\text{band}}(\nu) \, d\nu},$$
$$\langle L_{\nu} \rangle_{\text{band}} \equiv \frac{\int R_{\text{band}}(\nu) L_{\nu} \, d\nu}{\int (\nu/\nu_{\text{band}})^{\beta} R_{\text{band}}(\nu) \, d\nu},$$
(19)

 $\langle \nu j_{\nu} \rangle_{\text{band}} \equiv \nu_{\text{band}} \langle j_{\nu} \rangle_{\text{band}}, \quad \langle \nu L_{\nu} \rangle_{\text{band}} \equiv \nu_{\text{band}} \langle L_{\nu} \rangle_{\text{band}}, \quad (20)$

ここで、R(v)=装置の感度、表4にはU, q_{PAH}の組み合わせに対してIRAC4バンド、MIPS3バンドに対 する(vj,)が、表5にはあかり、表6はハーシェルに対する同様の(vj,)が載せてある。

図15 Spitzerの4つのバンド強度のUに対する変化。 予想される通り、3.6,7.9µ バンドは低Uでは単一光子の加熱が効き、従って一定である。

 $L_{\text{TIR}} \approx 0.95 \langle \nu L_{\nu} \rangle_{7.9} + 1.15 \langle \nu L_{\nu} \rangle_{24} + \langle \nu L_{\nu} \rangle_{71} + \langle \nu L_{\nu} \rangle_{160}.$ (22)

図17

上:L_{TIR}=∫L_v dv とそれに対する

評価式(22)の比が0. 1<U<100と 10⁴<U<10⁶では10%精度を持つ ことを示す。 100<U<10000では少し悪い。

なぜなら、FIR放射ピークが中間の40 μに落ちるからである。

下: Dale/Helou 2002 の近似式に対 する同様の図。

8. 様々な強度の星の光に対するダストスペクトル 強度Uに曝されるダスト質量の割合を以下の(23)式で表す:

$$\frac{dM_{\text{dust}}}{dU} = (1 - \gamma)M_{\text{dust}}\delta(U - U_{\text{min}}) + \gamma M_{\text{dust}}\frac{(\alpha - 1)}{\left(U_{\text{min}}^{1 - \alpha} - U_{\text{max}}^{1 - \alpha}\right)}U^{-\alpha}, \quad \alpha \neq 1, \quad (23)$$

星の輻射強度分布=δ 関数+指数関数

Mdust=ダストの総量

(1-γ)=Uminの星に曝されるダストの割合 指数型は Dale et al 2001, Dale/Helou 2002 が採用した ここで加えたδ 型は一般星間空間を表し、大部分のダストはこっちに所属する。

Draine et al 2007 SWING銀河は、 $\alpha = 2$ 、Umin=10⁶で表わされる。 残るパラメターはスペクトルの形を、 q_{PAH} 、Umin、 γ 、強さをMdust が決める。

図18 パラメターを変えたダストスペクトルの例。γ が増えると中間赤外が上がる。

9. q_{PAH}、Umin、γ 、 Mdust の評価 <---- MIPS, IRAC IRAC3. 6µ =ほとんど星の光---->7. 9, 24µ から星成分を差し引くのに使える。 71, 160µ に星成分はない。

$$F_{\nu}^{\rm ns}(7.9\ \mu{\rm m}) = F_{\nu}(7.9\ \mu{\rm m}) - 0.232F_{\nu}(3.6\ \mu{\rm m}), \qquad (24)$$
$$F_{\nu}^{\rm ns}(24\ \mu{\rm m}) = F_{\nu}(24\ \mu{\rm m}) - 0.032F_{\nu}(3.6\ \mu{\rm m}), \qquad (25)$$

ここの係数0. 232, 0. 032はHelou etal. 2004から取った。 q_{PAH} を指定すると、(Umin、 γ)の組み合わせを探すことになる。

図 19 q_{PAH}=0.46%と4.6%の場合、(U, γ)の[71,160]カラー対24μ、7.9μ 強度の図 γ=0は、U=Uminの単純な恒星光の場合に相当する。

γ =0の場合、(v L_v)₂₄/L_{TTR}は図15で見たように、Umin<2では一定である。その時、24μ 放射は 単一光子加熱で決まるからである。Umin<1で単一光子加熱のみのとき、q_{PAH}=0. 47——>4. 6% でも24μ は1. 5倍にしかならない。 $\gamma > 0$ では(v L_v)₂₄/L_{TR}はU>10の恒星光にさらされるので上昇する。

7.9µの話はかなり異なる。

図19(c)、(d)を見ると分かる通り、単一光子加熱で7, 9µ 放射はq_{PAH}に比例する。

q_{PAH}=0.47——>4.6%で(v L_v)₂₄/L_{TIR}はは0.02——>0.2に増加する。

γ が増すと、追加7.9µ 放射のため、q_{PAH}=0.47%では(v L_v)_{7.9}/L_{TIR}が上昇するが、4.6%では 変化小さい。ここはわからん。

q_{PAH}、Umin、γ、Mdustを求める一つの方法はパラメター空間で最適解を探すことで、Draine2007が 採用した。

もう一つは、ここで述べる: Spitzer の 3.6,7.9,24,71,160µ の5バンドをグラフ的に扱う方法 である。

うち、3. 6μ は星成分を補正して、7. 9, 24μ を求めるのに使う。残り4つから次の3つの比を作る。

$$P_{7.9} \equiv \frac{\left\langle \nu F_{\nu}^{\,\mathrm{ns}} \right\rangle_{7.9}}{\left\langle \nu F_{\nu} \right\rangle_{71} + \left\langle \nu F_{\nu} \right\rangle_{160}},\tag{26}$$

$$P_{24} \equiv \frac{\left\langle \nu F_{\nu}^{\,\mathrm{ns}} \right\rangle_{24}}{\left\langle \nu F_{\nu} \right\rangle_{71} + \left\langle \nu F_{\nu} \right\rangle_{160}},\tag{27}$$

$$R_{71} \equiv \frac{\langle \nu F_{\nu} \rangle_{71}}{\langle \nu F_{\nu} \rangle_{160}}.$$
 (28)

0. 1<U<100では、ダストが50-200 μ で放射するエネルギーは(v F_v)₇₁+(v F_v)₁₆₀に比例する。

R71はFIRを支配する a>0.01μのダストの温度に鋭敏である。 したがって、R71は恒星光強度の 指標となる。

9.1. q_{PAH}の決定

P7.9は、PAHが出す放射、単一光子加熱、のわりあいである。したがって、P7.9は恒星光強度によらない。

次ページの図20では、P7.9対R71のグラフが並べてある。

PAH比最小のモデルは当然、P7.9 最低である。この時には高いUに曝された少量のダストでも7.9μ 輻射を大幅に引上げる。したがって、γ が0から10⁶へと増えていくとP7.9も上がる。

q_{PAH}が大きくなると、γ に対しP7.9の反応は鈍くなる。なぜなら、Uが小さい時でも単一光子加熱が7. 9μ には効いているからである。ここはわからん。

多くの観測スペクトルから、P7.9はγ =0のラインに近いことが分かった。ここはわからん。 つまり、(R71, P7.9)点がγ =0ライン近くにあるq_{PAH}を探す。

9.2. Uminとγ の決定

図7から判るように、24µ 放射は主に、15-40A粒子から生まれる。

したがって、0.1<U<10では大部分が71,160µ で放射されるため、P24に制限が付く。

しかし、ある割合のダストが強い恒星光に晒されれば24μに寄与する。したがって、R24はγに鋭敏で

ある。

したがって、γ を求めるには、

- (1) 図20から決めたq_{PAH}で、図21を眺め、観測(R71, P24)点からUminとγを決める。
- (2) 図21と図20とで異なる(Umin,γ)を示す場合、単一ダストモデルが不十分ということである。
- (3) そんな時は図21の方がよい。(Umin,γ)がq_{PAH}に対し鈍いからである。

図21 R71により、P24がどう変わるかを各q_{PAH}毎にUminとγのメッシュで表した。

9.3. f_{PDR}の決定

SFR付近にはU>100のFDRが広がる。α =2指数則U分布を仮定して、U>100のFDRからダスト 放射される

輻射量の割合fpprを求めると、

$$f_{\rm PDR} = \frac{\gamma \ln(U_{\rm max}/10^2)}{(1-\gamma)(1-U_{\rm min}/U_{\rm max}) + \gamma \ln(U_{\rm max}/U_{\rm min})}.$$
 (29)

図20, 21からUmin, γ 等が求まれば、この式からf_{PDR}が決まる。

もっと直接にfporを求める方法もある:

PAHは単一光子加熱では24μ にほんの少ししか回さない。しかし、Uがある範囲にわたる場合、U大の 領域から24μ が付加される。f_{PDR}はPAHの寄与を引いた残りの25μ 強度と相関することが分かった。 図22を見ると、

P24-0.14P7.9が適当な補正である。

図22 U>100領域からのfppgとPAH補正後の24µ 強度

9.4 例

IC2574

図20からP7. 9=0. 027という低い値。そこからq_{PAH}=0. 5%、Umin=2. 3, γ =0. 012 Mrk33

図20からはq_{PAH}=3.2%、図21から Umin=7, γ =0.14

γ が非常に大きいことは多くのダストがOBアソシエーションPDRにあることを示し、この銀河が星形成 爆発中の矮小銀河であるという観測と合致する。

NGC1266

図20からはP7.9=0.044でq_{PAH}=0.47%、図21から Umin=12.5, γ =0.029 NGC3521

図20からはq_{PAH}=4.6%、図21から Umin=1.1, γ =0.007

NGC6822

図20からはq_{PAH}=1.1%、図21から Umin=2, γ =0.006

9.5. Mdustの推定

j,=H核子当たりのダスト輻射率 とすると、

$$F_{\nu} = \frac{M_{\rm H}}{m_{\rm H}} \frac{j_{\nu}}{D^2}$$
(30)

$$M_{\rm dust} = \left(\frac{M_{\rm dust}}{M_{\rm H}}\right) m_{\rm H} \frac{F_{\nu}}{j_{\nu}} D^2. \tag{31}$$

j,が簡単には決まらないのが問題。割合丈夫な方法として、次の量を考える:

$$\Psi(q_{\rm PAH}, \gamma, U_{\rm min}) \equiv \left(\frac{M_{\rm dust}}{M_{\rm H}}\right) m_{\rm H} \frac{\langle U \rangle}{\langle \nu j_{\nu} \rangle_{24} + \langle \nu j_{\nu} \rangle_{71} + \langle \nu j_{\nu} \rangle_{160}},$$
(32)

ここで、<U>=平均恒星光強度。(23)式のUに曝される Mdust 分布式によって、

$$\langle U \rangle \equiv \frac{\int U \, dM_{\text{dust}}}{\int dM_{\text{dust}}} = (1 - \gamma) U_{\text{min}} + \frac{\gamma U_{\text{min}} \ln(U_{\text{max}}/U_{\text{min}})}{1 - U_{\text{min}}/U_{\text{max}}}.$$
(33)

したがって、<Fv /jv >の代わりに

$$\frac{M_{DUST}}{M_{H}}m_{H}\frac{\left\langle v\cdot F_{v}\right\rangle_{24}+\left\langle v\cdot F_{v}\right\rangle_{71}+\left\langle v\cdot F_{v}\right\rangle_{160}}{\left\langle v\cdot j_{v}\right\rangle_{24}+\left\langle v\cdot j_{v}\right\rangle_{71}+\left\langle v\cdot j_{v}\right\rangle_{160}}=\frac{\Psi}{\left\langle U\right\rangle}\left(\left\langle v\cdot F_{v}\right\rangle_{24}+\left\langle v\cdot F_{v}\right\rangle_{71}+\left\langle v\cdot F_{v}\right\rangle_{160}\right)$$

を用いて、

$$M_{\rm dust} = \frac{\Psi}{\langle U \rangle} \left(\langle \nu F_{\nu} \rangle_{24} + \langle \nu F_{\nu} \rangle_{71} + \langle \nu F_{\nu} \rangle_{160} \right) D^2.$$
(34)

が得られる。Ψはダストモデルを用いて計算する。

図23 Ψの計算値

Ψは0.044-0.066の幅でしか変動しないことが分かる。もし、q、Umin, γ もわかればΨも決まる。 したがって、Mdustを求める手続きは以下のようである:

(1) <F^{ns}_{7.9}>, <F^{ns}₂₄>,<F₇₁>、<F₁₆₀>を求め、P7. 9, P24, RR71を計算する。

- (2) R71とP7. 9から図20を使って、qを求める。
- (3) 図21からUmin、γ を求める。
- (4) 図23からΨを求める。
- (5) Uminとγ からくU>を求める。
- (6) (34) 式からMdustを求める。
- 10. ディスカッション
- 10.1. PAHのNIR連続吸収は何か?

このモデルではダストのサイズ分布の小さい端はPAH粒子が占めている。したがって、ISOの2-6µや IRAC4.5µで観測された放射を説明するために、PAHに連続吸収成分を仮定した。吸収強度はグラフ ァイト自由電子の1%とした。

An/Sellgren2003: NGC7023で2µ 連続放射と3. 29µ PAHバンドが異なる分布

——> 多分2µ が強いところではPAHが脱水素化されていて3.29µ が出せないのではないか。 NIR連続放射がPAH起源という仮説は、9.8,18µ シリケートバンドが通常放射では見えない、例外は 星風、CHIIR,トラペジウムくらい、事実と合致する。シリケートが放射で見える場所は半径0.1µ サイズ ダストでもT>200Kになる場所である。

Li/Draine 2001: 銀河系の拡散光からは以前より大量のPAHが可能になる。9.7シリケート放射がPAH8.6と11.3の間で隠せるから。分からない

10.2. PAHイオンのNIR吸収

Li/Draine2001の電離PAHの赤—NIR吸収率は少数の実験データに基づいていた。

最近(Mattioda et al 2005)のデータは0.77-2.5µ で吸収率が非常に高く、可視、NIR光でもPA HがMIRで放射するのに十分な温度に加熱できることを示す。 これは以下の観測とも合う。

Uchida et al 1998, Pagani et al 1999: UVがないところでもPAH放射帯が見える。

Sellgren et al 1990: I(12µ)/FIRが5000K<Tstar<33000Kの24反射星雲で一定。

Coulson/Walther 1995: SAO206462(F8)のデブリからPAH放射

Smith et al 2004: HD34700(G0)のデブリからPAH放射

Furlan et al 2006: 111 T Tau星の Spitzer で G1より晩期ではPAH放射なし。

これらから、PAHの起源を考えると、

Jura 1987, Latter 1991: 炭素星からの放出

しかし、炭素星のMIRスペクトルにPAHバンドなし。

Speck/Barlow 1997, Boersma et al2006: 熱い伴星の炭素星からPAHバンド検出

UVが必要か?

Mattioda et al 2005 の可視—IR吸収断面積測定では炭素星でも加熱

可能

――> 星風中のPAH量に制限=すごく少ない

Jura et al 2006:K2III 星 HD233517(Oーrich) にPAH放射発見。 Flared disk が原因かも知れ ない。

10.3. 6.2µmは吸収で観測できるか?

銀河系のダストモデルでは、ダスト質量のq_{PAH}=4.5%がNc<1000のPAHに含まれる。このモデル

ではC/H=52ppmの単位H核子当たりC原子がa<50Aの炭素質粒子に含まれる。その半分は中性、 半分はイオンである。

このモデルで6.2µ吸収の積分強度は、

$$\frac{1}{N_{\rm H}} \int \Delta \tau \, d\lambda^{-1} = 6.7 \times 10^{-23} \left(\frac{\rm C_{PAH}/\rm H}{\rm 52 \ ppm} \right) \, \rm cm/\,\rm H.$$
 (35)

これはどう出すか? 表1のj=9、 λ j=6. 22 μ の数値を使う。 T = $\int \sigma \cdot n \cdot dl$ $\int T d\lambda^{-1} / N_{H} = Nd \cdot \sigma int / N_{H} = 0.5 \cdot (29.4 + 235) \cdot 10^{-20} (cm / C) (Nc / N_{H})$ = 0.5 \cdot (29.4 + 235) \cdot 10^{-20} (cm / H) \cdot 52 \cdot 10^{-6} (C_{PAH} / H / 52 ppm)) = 6.87 \cdot 10^{-23} (C_{PAH} / H / 52 ppm) (cm / H)

一方、CygOB2No12の観測では∫Δτ dλ⁻¹<0.8cm⁻¹ より、N_H=1.9·10²²cm⁻²を仮定して、

$$\frac{1}{N_{\rm H}} \int \Delta \tau \, d\lambda^{-1} < 4.2 \times 10^{-23} \, \, {\rm cm/H},$$

で(35)式より少し小さい。

採用したモデルではNcく50000のPAH中に52ppmとしているが、6.2µ 放射はNcく500のPAHが 担う。

このPAHは35ppmである。すると、観測に合う。

Spitzerによる赤化の非常に強い星の観測から6.2µ星間吸収の検出が強く期待される。

10.4. 重水素化PAH

アロマティックなC-D結合のゼロ点エネルギーはC-Hより30%低い。 観測ではライン強度比(D/H)はDがダストに取り込まれていると解釈されている。 PAHではD/H=0.3(星間では2・10⁻⁵)くらい?(Draine2006) Peeters 2004 : Orion Bar 4.4 と 4.65µ からD/H=0.17

10.5. PAHの普遍性と不在性

PAHあり: LIRG, ULIRG, E銀河で10⁷Kプラズマを含む 銀河ハロー

- PAHなし: AGN
 - SMC

低メタル(Z~Zo/41) blue compact dwarf galaxy SBS0335-052

低メタル(Z=0.02-0.6)銀河ではPAHが抑えられている。

qPAHが銀河のメタル、L,タイプでどう変わるかの情報が必要である。

1. PAH強度一定の仮定でIR宇宙論サーベイを行うのは危険である。

2. 7. 7µの(ライン/連続)をULIRG中でSFかAGNかの判定に使う物理的基礎

- 3. ハイz銀河の近傍類似天体として、近くの低メタル天体でPAHが少ないことの意味?
- 4. IRAC8µ をSF強度の指標に使えるか?破壊?
- 10.6. PAHスペクトルの散らばり

10.7. 他のモデル