木曽シュミットシンポジウム2023 (2023年5月30-31日)

Light-curve Modeling for The Initial Rising Phase of Rapidly-evolving **Transients Powered by Continuous Outflow**

Kohki Uno (Kyoto University) Collaborator: Keiichi Maeda (Kyoto Univ.)

reference: KU & Maeda 2020a/b, 2023c https://ui.adsabs.harvard.edu/abs/2020ApJ...897..156U/abstract https://ui.adsabs.harvard.edu/abs/2020ApJ...905L...5U/abstract https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.4598U/abstract

Frontiers in Rapid-Evolving Transients

~2000s: Supernova, Nova... timescale > 10 days

2010s~: Rapid-Evolving Transients

timescale ~ day

Much more diversity than expected !

 \rightarrow New insight for Stellar Evolution

Rapid-Evolving Transients by ZTF

木曽シュミットシンポジウム 2023 (5/30-31, 2023)

IIn/Ibn (CSM interaction)

Fast Blue Optical Transients (FBOTs)

Method: Wind-Driven Model

This Study

Motivation	Which systems can ex
Assumption	wind-like continuous n
Method	We apply a 'Wind-Driv

vplain the FBOT/AT2018cow?

- mass ejection (outflow)
- en Model' to FBOT/AT2018cow.

Method: Wind-Driven Model (Set Up)

<u>Wind-Driven Model (KU & Maeda 2020a, b, 2023c)</u>

Assuming continuous outflows like stellar winds, characterized by mass-loss rate (\dot{M}), wind velocity (v_{wind}), and wind-launched radius (R_{eq}).

Method: Wind-Driven Model (Typical Scale)

木曽シュミットシンポジウム 2023 (5/30-31, 2023)

@ R_{eq} (equipartition radius): $aT_{eq}^4 = \frac{1}{2}\rho_{eq}v^2$ adiabatic cooling $T(r) = T_{eq} \left(\frac{r}{R_{eq}}\right)^{-2/2}$

diffusion cooling $T(r) = T_{ad} \left(\frac{r}{R_{ad}}\right)^{-3/2}$

diffusion cooling $T(r) = T_{ad} \left(\frac{r}{R_{ad}}\right)^{-3/4}$

@ R_{rec} (recombination radius): $T(R_{rec}) = 12000, 6000 (K)$

@ $\mathbf{R}_{\tau_{\mathrm{H}\alpha}=1}$ (line forming radius): $\tau_{\mathrm{H}\alpha} \approx 1.79 \times 10^{18} \rho \exp\left(-\frac{\Delta E_{1,2}}{kT}\right) \frac{r}{v}$

Results: Application to AT2018cow

Discussion: Central Engine for FBOTs

- eruptive mass ejection: $\dot{M}_0 \sim 30 \, [M_{\odot}/yr]$
- mass-loss rate index: $\dot{M}(t) \propto t^{-5/3}$
 - \rightarrow BH-accretion-driven transients?
- wind-launched radius: $R_{eq} \sim 10^{13}$ [cm] → Red Super Giant (RSG) radius? or Tidal Disruption Events?
- total mass ejection: $M_{\rm total} \sim 0.2 ~[{
 m M}_{\odot}]$
- total kinetic energy: $E_{\text{kin.total}} \sim 10^{52}$ [erg]
 - \rightarrow typical gravitational energy at the scale of stellar core?

(1) Failed Supernovae by Supergiant (2) Tidal Disruption Events (TDE)

木曽シュミットシンポジウム 2023 (5/30-31, 2023)

Speculation for Central Engine for FBOTs/AT2018cow

Discussion: Central Engine for FBOTs

(1) Failed Supernova by Supergiant

- Energy Budget (Dexter+ 15) $E \sim \varepsilon M_{\text{fallback}} c^2 \sim 1.8 \times 10^{51} \text{ [erg]} \left(\frac{M_{\text{fallback}}}{1 \text{ M}_{\odot}} \right) \left(\frac{\varepsilon}{10^{-3}} \right)$
- Ejected Mass (Dexter+ 15) $M_{\rm ej} \sim 10^{-3} 10^0 \ [{\rm M}_\odot]$
- Timescale $t_{\rm dyn} \approx t_{\rm freefall} \sim 6 \, [\rm days] \left(\frac{M_{\rm BH}}{30 \, \rm M_{\odot}}\right)^{-1/2} \left(\frac{R_{\rm RSG}}{10^{13} \, \rm cm}\right)^{3/2}$

木曽シュミットシンポジウム 2023 (5/30-31, 2023)

Rees+ 88

Discussion: from Tomo-e to Seimei

FBOT @100Mpc

- g ~ 16-17 mag @peak
- rise time ~ a few days

→ High Cadence (<day) Survey * public ZTF survey: ~3 (2) day

→ Follow-Up Observation

Seimei

Further Works: from ASAS-SN to Seimei

木曽シュミットシンポジウム 2023 (5/30-31, 2023) Further Works: from Tomo-e, via Seimei, to Subaru

• 1 night (0.5 night x 2) left in this semester

Schedule for June 2023

Sun	Mon	Tue	Wed	Thu	Fri	Sat	S	un	Mon	Tue	Wed	Thu	Fri	Sat
				Jun 01	Jun 02	Jun 03 O								Jul 01
					S23A-TE166-K									SSP
				SSP		SSP								Obs
				IND	NGS	IND								MOIRCS
				S23A-UH015-B2	S23A-UH015-B2	S23A-UH015-B2	Jul	02 O	Jul 03	Jul 04	Jul 05	Jul 06	Jul 07	Jul 08
							E	Eng	Eng	Obs	S23A-059		S23A-027	S23A-027
Jun 04	Jun 05	Jun 06	Jun 07	Jun 08	Jun 09	Jun 10 0	AO	0188	IRCS	IRCS+NGS	Hirano IRD	S23A-UH001-S	Kanai MOIRCS	Kanai MOIRCS
SSP(0.2)	SSP(0.15)		SSP(0.15)				S	SP	Eng	Fng		Lucas CHARIS+VAM+SCExAO+NGS	S23A-038	SSP
					000A TE100 K	000A TE100 K	IF	RD	IRD	IRD	SSP			IRD
523A-059(0.15) Hirano	Hirano	S	523A-059(0.15)		523A-TET38-K	523A-TET38-K								Jul 15
		UH												S23A-UH013
SSP(0.15)	IRD	G	Please let me know											
S23A-085	S23A-038													
Lozi	Currie													
VAM+SCExAO+NGS	CHARIS+SCEXAO	HARIS+SCEXAO												Toshikawa
Jun 11	Jun 12	Jur	when you discover nuclear transferits !											
S23A-TE138-K Hennawi	S23A-TE138-K Hennawi	S23		-									Jul 21	Jul 22
HSC	HSC	Hou	пэс	Queue	Пос	Hau	5231	A-U89	523A-UOU	Eng	Eng	Eng	Fng	Eng
Queue HSC	S23A-TE006-K Verbiscer HSC	S23A-TE006-		HSC	Queue HSC	Queue HSC	Toshikawa FOCAS	Aoki HDS	PFS+MCS	PFS+MCS	S PFS+MCS	PFS+MCS	PFS+MCS	
		K Qu Verbiscer H HSC	Queue											
			1130				Jul	23	Jul 24 🛛	Jul 25	Jul 26	Jul 27	Jul 28	Jul 29
Jun 18	Jun 19	Jun 20	Jun 21	Jun 22	Jun 23	Jun 24							SSP IRD	SSP IRD
S23A-TE017-G	S23A-TE017-G				S23A-055	S23A-055			Fra	- Frag	- Eng	Eng		S23A-TE010-
Hudson HSC	Hudson	S23A-TE017-	Queue	S23A-080	Nishigaki FOCAS	FOCAS	PFS-	+MCS	PFS+MCS	PFS+MCS	PFS+MCS	PFS+MCS	SSP	к
		Hudson	HSC	Pena Herazo	S23A-UH013-A4	S23A-UH013-A4							IRD	Fitzgerald
Queue	Queue HSC	HSC		FUCAS	Do	Do								NGS
					FOCAS	FOCAS	Jul	30	Jul 31					
Jun 25 o	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30			A 0671	SSP					
	Eng	Eng REACH+NGS-	SSP	SSP	SSP		Na	arita	IRD					
Errer	SCExAO	AO	IRD	IRD	IRD		IF	RD	Obs MOIRCS					
FNA						=1			WOIL CO		11			

Schedule for July 2023

Summery

Background

Motivation

Method

Results

- Which systems can explain the FBOTs/AT2018cow?

- Tomo-e to Seimei (to Subaru)

 Recently, enigmatic transients; FBOTs/AT2018cow have been discovered. Supernova-like model cannot explain observational properties of FBOTs.

Assuming continuous outflow, we propose a 'Wind-Driven Model'.

The 'Wind-Driven Model' can explain some observational properties.

The central engine of FBOTs/AT2018cow may be Failed SN or IMBH TDE.

High cadence surveys are important to discover FBOTs & related objects.

