Exploration of rapidly evolving transients with the Subaru/HSC transient survey Seiji Toshikage, Masaomi Tanaka, Ichiro Takahashi (Tohoku Univ),

Naoki Yasuda, Nao Suzuki (Kavli IPMU) Tominaga Nozomu, Takashi J. Moriya (NAOJ) and HSC transient working group

Summary

- A number of Supernovae and peculiar transients (SuperLuminous, rapidly evolving, etc.) are discovered by recent transient surveys - a method for transients classification without spectroscopic data is needed
- Subaru/Hyper Suprime-Cam survey discovered 1824 Supernovae in the COSMOS field
- We developed a machine learning multiclass classifier for type Ia, Ibc, II supernovae and rapidly evolving transients
- New rapidly evolving transients were identified at redshift z = 0.70 1.0
- Event rate of rapidly evolving transients is estimated ~ 2% of Core-Collapse Supernovae
 - type Ibn supernovae ~ 0.4% of CCSNe $\rightarrow \geq 2\%$ of He star experience eruptive mass loss before the explosion

Rapidly evolving transients (RETs)

• optical transients with a short timescale

- time above half max ≤ 10 day
- unsolved mechanism
- Subdominant types of RETs (1) **AT2018cow like** 2 Type Ibn (CSM) ③ Type IIb (SCE) by Ho et al. 2021

Subaru/HSC transient survey

- The Hyper Suprime-Cam-SSP transient survey program
 - 2016.11 2017.04 - COSMOS UD/D field $1.77/5.78 \, deg^2$ - g, r, i, z band
- 1824 Supernovae spec-z 759 objects photo z 957 objects No redshift 108 objects

Method - Classification of rapidly evolving transients -

$(\mathbf{1})$ Datasets

training data set by simulation

la	SALT2 model template
lbc • II	observational template
RETs	Arnett82 semi-analytic model

test data set by observation COSMOS UD 879 SNe

2 Gaussian Process Regression (GPR)

connect sparse data with smooth curves

3 Feature extraction

60 features per one object e.g. peak flux

decline time from peak to half

flux

③ Feature extraction

peak

(4) classification by machine learning

Random Forest (supervised learning) Validation with simulation data

Accuracy 0.96(all) 0.97 (RETs)

classification of real data

66/879 objects classified as RETs

Results - New rapidly evolving transients

66 RET candidates by machine Learning selection by the light curve

Discussion - phase diagram and event rate

Estimation of event rate with HSC RETs

9 RETs identified (4 objects reported by Tampo+ 20)

Light curve comparison with RET samples

 $r = \sum_{i}^{N} \frac{(1+z_i)}{\epsilon T_i V_{max,i}} \simeq 6000 \text{ yr}^{-1} \text{ Gpc}^{-3}$

~ 2% of Core-Collapse Supernovae

 $lbn \simeq 1150 \text{ yr}^{-1} \text{ Gpc}^{-3}$ \simeq 0.4% of CCSNe

Ib $\simeq 20\%$ of CCSNe Shivers et al. 2017 \rightarrow 2% of He star eruptive mass loss