電子捕獲型超新星と鉄コア崩壊型超新星の 多色光度曲線

佐藤大仁(総合研究大学院大学), 冨永望, 守屋尭(国立天文台), 平松大地 (Center for Astrophysics | Harvard & Smithsonian) 2023年5月30日 木曽シュミットシンポジウム2023 <u>masato.sato@grad.nao.ac.jp</u>

IIP型超新星

- ・プラトー:
 - ・100日程度明るさがおおよそ一定
 - ・水素外層の衝撃波加熱による
- ・テイル:
 - ⁵⁶Coのdecay
 - ⁵⁶Niのejected massが分かる

1. Introduction

- ・星の最期は質量で決 まる
- ・8-10M_☉の星の進化
 の最期は、よくわかっていない
- その最期を明らかに
 することは、銀河化学
 進化や超新星爆発機
 構などにとっても重要

電子捕獲型超新星(ECSN)

- ・ Super-AGBの爆発(Miyaji+80, Nomoto 87)
- 爆発:第一原理計算で爆発、低い爆発エネルギー (~10⁵⁰erg)(Kitaura+06, Janka+08)
- ・元素合成:少ない⁵⁶Ni (0.002-0.004M_☉) (Wanajo+09)
- ・光度曲線:II-P型、暗いtailフェーズ (Tominaga+13, Moriya+14)
- ・候補天体:SN1054(かに星雲)、

SN2018zd(Hiramatsu+21)

- ・電子捕獲型では、青いプラトー(~50d)が観測される。
- ・星周物質(CSM)との相互作用は考慮されていない。

CSMがある場合の光度曲線(Moriya+18)

Moriya+18

- CSMが十分に濃い場合、delayed shockbreakoutになる
- CSMが濃いほど、ピークが遅く、明るくなる
- ・CSMが濃いほど、色進化のタイムスケールが長くなる

本研究

- ・モチベーション:
 - ・電子捕獲型と軽い鉄コア崩壊型の光度曲線の違いを明らかにし、観測から電子捕獲型を見分け、8-10M_☉の星の進化を明らかにしたい。
- •手法:
 - ・STELLA(Blinnikov+00)を用いて光度曲線を計算
 - CSMなしの計算を行い、Kozyreva+21の結果を確認
 - ・CSMつきの計算を行い、電子捕獲型の観測的特徴を明らかにする
 - ・電子捕獲型を見分ける手法を提案

親星モデルとパラメータ

•親星

- RSG: Sukhbold+16 (s9.0-12.0)
- SAGB: Tominaga+13
- ・パラメータ
 - 星の質量 M
 - ・外層のH組成 X(H)
 - ・爆発エネルギー E_{exp}
 - 質量放出率 *M*
 - CSM半径 R_{out}

CSMのパラメータ

CSMがない場合の光度曲線の比較

ECSN M=4.4M $_{\odot}$, X(H)=0.70, E_{exp}=1.1 × 10⁵⁰erg FeCCSN M=8.7M $_{\odot}$, X(H)=0.68 E_{exp}=3.7 × 10⁵⁰erg

電子捕獲型で青いプラトー (~50d)

濃い($\dot{M} = 10^{-2} M_{\odot} / yr$) CSMの場合の 光度曲線の比較

ECSNの判別手法

• CSM interactionがt_{PT}/2より短い場合に適用可能。

•
$$B - V\left(\frac{t_{PT}}{2}\right) \lesssim 0.9 \times \left(\frac{t_{PT}}{100}\right) - 0.2$$
 (ECSN)

今後

- ECSNの割合: ~0.5-8.5% of all CCSNe (Hiramatsu+21)
- ・過去の観測、新規観測からECSNを探す。
- ・光度曲線の再現等から、ECSNの親星やCSMなどに制限を与える。
- ・爆発初期からの光度曲線、色の情報が必要。
- ・Tomo-e Gozen、せいめい望遠鏡による連携観測を行いたい。

まとめ

- ECSNの光度曲線
 - CSMがない/薄い ($\dot{M} \leq 10^{-4} M_{\odot} / yr$): 青いプラトー
 - CSMが濃い ($\dot{M} \ge 10^{-2}$ "): delayed shockbreakoutの後に青いプラトー
- t_{PT}, B-V(t_{PT}/2)を用いたECSNの判別手法を提案した。本手法によれば、 SN2018zdはECSNであった可能性が高い。
- 今後、既存の観測結果や、Tomo-e Gozen、せいめい望遠鏡を用いた 新規観測結果から、ECSNを見つけ、その親星やCSMの情報などを調 べていきたい。

appendix

薄い($\dot{M} = 10^{-4} M_{\odot} / yr$) CSMの場合の 光度曲線の比較

ECSN M=4.4M $_{\odot}$, X(H)=0.70, E_{exp}=1.1 × 10⁵⁰erg, CSM radius=10¹⁵cm FeCCSN M=8.7M $_{\odot}$, X(H)=0.68 E_{exp}=3.7 × 10⁵⁰erg, CSM radius=10¹⁵cm

電子捕獲型で青いプラトー (~50d)

電子捕獲型 CSMの有無($\dot{M} = 10^{-4} M_{\odot}/yr$)

ECSN M=4.4M $_{\odot}$, X(H)=0.70, E_{exp}=1.1 × 10⁵⁰erg, CSM radius=10¹⁵cm

ほとんど、変化なし

電子捕獲型 CSMの有無($\dot{M} = 10^{-2} M_{\odot}/yr$)

ECSN M=4.4M $_{\odot}$, X(H)=0.70, E_{exp}=1.0 × 10⁵⁰erg, CSM radius=10¹⁵cm

18

delayed shockbreakoutのピークが同程度の明るさ、色になる
 依然、電子捕獲型のプラトー後半は青い

Photosphere evolution (no CSM)

Ejecta evolution (no CSM@40d)

Photosphere evolution ($\dot{M} = 10^{-4} M_{\odot}/yr$)

Photosphere evolution ($\dot{M} = 10^{-2} M_{\odot} / yr$)

Ejecta evolution (dense CSM@15d)

Ejecta evolution (dense CSM@70d)

FeCCSN M=8.7M $_{\odot}$, X(H)=0.68 E_{exp}=3.7 × 10⁵⁰erg, FeCCSN M=8.7M $_{\odot}$, X(H)=0.70 E_{exp}=3.7 × 10⁵⁰erg,

今回比較しているモデル程度ならあまり違わない

電子捕獲型のRphが小さい理由①

•
$$L_{plateau} \sim 1.1 \times 10^{42} \left(\frac{R}{3.5 \times 10^{13} cm}\right)^{2/3} \left(\frac{E}{10^{51} erg}\right)^{5/6} \left(\frac{M_H}{10M_{\odot}}\right)^{-1/2} erg/s$$

• $t_{plateau} \sim 109 \left(\frac{R}{3.5 \times 10^{13} cm}\right)^{1/6} \left(\frac{E}{10^{51} erg}\right)^{-1/6} \left(\frac{M_H}{10M_{\odot}}\right)^{1/2} days$ (Eastman+94)

・Bolometric degenerateの場合、 $L_{plateau}$ と $t_{plateau}$ が電子捕獲型と鉄コア崩壊型で等しくなり、 $E_{EC} = (R_{RSG}/R_{SAGB})^{5/4} \times E_{FeCC}$

電子捕獲型のRphが小さい理由②

• R_{RSG}=10^{13.457}, R_{SAGB}=10^{13.85}cmとすると、

$$E_{EC} = (10^{-0.393})^{5/4} \times E_{FeCC} \sim 0.32 \times E_{FeCC}$$

• M_{ej,FeCC}=7.7, M_{ej,EC}=3.2M_oとすると、ejectaの典型的な速度は、
 $\frac{v_{EC}}{v_{FeCC}} = \sqrt{\frac{E_{EC}/M_{ej,EC}}{E_{FeCC}/M_{ej,FeCC}}} \sim \sqrt{0.77} \sim 0.88$

 そのため、電子捕獲型は、鉄コア崩壊型に比べてejectaが広がるス ピードが遅く、shockbreakout後、同じタイミングで見ると、鉄コア崩 壊型より内側にejectaがあり、高温になっている。

電子捕獲型のRphが小さい理由③

時間がずれているだけで進化はあまり違わない

電子捕獲型が青い理由

鉄コアでは早く冷める(半径が小さいため)①

- shockが星表面に到達したときの典型的な温度 $T_0 \propto \left(\frac{E}{R^3}\right)^{1/4}$
- 断熱膨張

$$T = T_0 \left(\frac{R_0}{R}\right)^{\frac{3}{4}\gamma}$$

• $T_{FeCC}(R=R_{SAGB})$ 1,

$$T_{FeCC}(R_{SAGB}) = T_{FeCC,0} \left(\frac{R_{RSG}}{R_{SAGB}}\right)^{\frac{3}{4}\gamma}$$

鉄コアでは早く冷める(半径が小さいため)②

• よって、同じ場所(R=R_{SAGB})での温度は、 $\frac{T_{FeCC}(R_{SAGB})}{T_{EC}(R_{SAGB})} = \frac{T_{FeCC,0}}{T_{EC,0}} \left(\frac{R_{RSG}}{R_{SAGB}} \right)^{\frac{3}{4}\gamma} = \left(\frac{E_{FeCC}}{E_{EC}} \right)^{1/4} \left(\frac{R_{RSG}}{R_{SAGB}} \right)^{-3/4} \left(\frac{R_{RSG}}{R_{SAGB}} \right)^{\frac{3}{4}\gamma}$ $= \left(\frac{E_{FeCC}}{E_{EC}} \right)^{1/4} \left(\frac{R_{RSG}}{R_{SAGB}} \right)^{\frac{3}{4}(\gamma-1)}$

• 同程度のエネルギー、R_{RSG}=10^{13.457}, R_{SAGB}=10^{13.85}cmとすると、 $\frac{T_{FeCC}(R_{SAGB})}{T_{EC}(R_{SAGB})} = \left(\frac{R_{RSG}}{R_{SAGB}}\right)^{\frac{3}{4}(\gamma-1)} = 10^{-0.393 \times \frac{3}{4}(\gamma-1)}$

鉄コアでは早く冷める(半径が小さいため)③

•
$$\gamma = 5/3, 7/5, 4/3$$
の場合、

$$\frac{T_{FeCC}(R_{SAGB})}{T_{EC}(R_{SAGB})} \sim \begin{cases} 0.64 & (\gamma = 5/3) \\ 0.76 & (\gamma = 7/5) \\ 0.80 & (\gamma = 4/3) \end{cases}$$

となり、鉄コア崩壊型では温度が下がっている。

・CSM付きの場合、断熱膨張にはならないが、密度が低いので、同様に鉄コアで冷たくなっている。

鉄コアでは早く冷める(半径が小さいため)④

ECSN M=4.4M_{\odot}, X(H)=0.70, E_{exp}=1.1 × 10⁵⁰erg, CSM radius=10¹⁵cm FeCCSN M=8.7M_{\odot}, X(H)=0.68 E_{exp}=**1.1** × **10⁵⁰erg**, CSM radius=10¹⁵cm

3. Discussion

• 3-1. Bluer plateau of ECSN

U-V

Similar E_{Exp} (no CSM)

 ECSN M=4.4M_{\odot}, X(H)=0.70, E_{exp}=1.1 × 10⁵⁰erg, CSM radius=10¹⁵cm

 FeCCSN M=8.7M_{\odot}, X(H)=0.68 E_{exp}=1.1 × 10⁵⁰erg, CSM radius=10¹⁵cm

 Bolometric U

ECSN is still bluer.

Bluer plateau	$ \begin{array}{ c c c c } & \text{high} $
------------------	--

- Higher T_{ph} of ECSN causes the bluer color.
- In spite of larger r_{ph} (photospheric radius), T_{ph} is also higher.
- Photosphere is defined as r_{ph} of: $\tau = \int_{r_{out}}^{r_{ph}} \kappa \rho dr = 2/3$

Optical depth (τ) structure @40 d

Optical depth τ

- τ steeply rise around photosphere.
- The main contribution to τ is from very nearby region of photosphere.

FeCCSN

~ 10⁻¹³-10⁻¹²

>

<

 $\lesssim 0.1$

κ (opacity) and ρ (Density)

- ECSN has high κ and low ρ around photosphere.
- κ_{ph} of FeCCSN cannot be high because of high ρ around photosphere.
- High κ_{ph} should be associated with high T_{ph} (next slide).

κ , x(ionization fraction), ρ , and T relation Temperature – Ionization fraction

- $\kappa \propto x$ because the opacity around outer ejecta is due to the electron scattering.
- x is positively correlated with T, and negatively with ρ according to Saha eq.

3. Discussion

Why FeCCSN has high ρ around photosphere ?

- κ of ECSN is high (partly ionized) at the outer ejecta while that of FeCCSN is almost 0 (fully recombined).
- Because κ of FeCCSN is very low at the outer ejecta, photosphere can be located at inner dense region.
- · It is due to the tenuous and extended envelope structure of ECSN.

 κ_{ph} and ρ_{ph} evolution

 ρ, T, x

Electron capture ($8M_{\odot}$ <M<10M $_{\odot}$)

- O+Ne+Mg core is formed. Electron degeneracy pressure support the self-gravity.
- Become super asymptotic giant branch(SAGB).
- When the core density become high and the fermi energy become high enough, electron capture by Mg occurs.
- It makes pressure low, and gravitational contraction proceed.

Explosion of ECSN

- Explodes in numerical simulation with first principles (Kitaura+06 and Janka+08) in contrast to FeCCSN.
- Explosion energy ~ 10^{50} erg
 - 1 order lower than normal supernovae (~10⁵¹erg)

Nucleosynthesis

		Ta Yields in Unit	able 1 ts of Solar Masse	Wanajo+09	
Model	$Y_{e,\min}$	⁵⁶ Ni	⁶⁴ Zn	⁹⁰ Zr	Ni/Fe
ST	0.464	2.50E-03	6.38E-04	1.21E-04	1.65
WH	0.462	4.06E-03	7.31E-04	1.39E-04	1.27
RT	0.464	2.52E-03	6.94E-04	7.83E-05	1.58
MX	0.480	1.67E-03	1.07E - 03	3.32E-08	3.01
FP1	0.468	2.62E-03	6.83E-04	5.75E-05	1.55
FP2	0.471	2.76E-03	7.08E-04	1.59E-05	1.46
FP3	0.475	2.91E-03	6.51E-04	8.04E-07	1.36
FM1	0.460	2.41E-03	5.83E-04	1.96E - 04	1.73
FM2	0.457	2.32E-03	5.31E-04	2.66E - 04	1.82
FM3	0.453	2.24E-03	4.83E-04	3.11E-04	1.92

- nucleosynthesis of ECSN was calculated by Wanajo+09.
- It shows:
 - low $^{56}\mathrm{Ni}$ (0.002-0.004M $_{\odot})$
 - large Ni/Fe ratio (1-2)

46

Light Curve of ECSNe

- Numerical simulations of ECSN light curve are conducted by Tominaga+13, Moriya+14 and Kozyreva+21.
- ECSN light curve is:
 - II-P like
 - large drop(~4mag) to tail phase
 - faint tail (low ⁵⁶Ni) (if no CSM)
- Moriya+14 included circumstellar matter (CSM) interaction.

Moriya+14

Light curves with CSM interaction

Moriya+18

- Wind acceleration are taken into account on calculating Light curves of FeCCSNe by Moriya+18.
- When CSM is high enough, delayed shockbreakout can be seen.

Crab nebula (SN1054)

- Suggested to be a supernova remnant (SNR) of ECSN from observational features:
 - Low energy: E_{exp} ~3x10⁴⁹erg (M_{ej} ~ 1-2M_{\odot} (Macalpine+91))
 - High Ni/Fe ratio: ~0.7-3.5 (Henry84)
- Problem:
 - High peak luminosity as normal supernovae(~10⁵¹erg) although ECSN has low explosion energy (~10⁵⁰erg).

• Solved:

• Large radius and small mass of the envelope can explain. (Tominaga+13)

SN2018zd

Hiramatsu+21

- exploded in March 2018
- Proposed as a ECSN by Hiramatsu+21 from its features:
 - light curve
 - nucleosynthesis
 - explosion energy

元素合成の違い(Wanajo+18)

・電子捕獲型と軽い鉄コア崩壊型では、ほとんど同じ元素合成