Searching for Close Binary Systems Nao Suzuki (Lawrence Berkeley National Lab)

Close Binary Systems : 1. Gravitational Wave Source 2. Progenitor of Type Ia Supernova

White Dwarf-White Dwarf: Double Degenerate System

White Dwarf-Main Sequence Star: Single Degenerate System

- §1: Close Binaries
- §2: WD Binaries
- §3: Spectroscopic Binaries

• §4: X-ray binaries

§1 : Close Binaries

Zwicky Transient Facility (ZTF) : Northern Hemisphere Sky Survey

M1: 0.61 M $_{\odot}$ M2: 0.21 M $_{\odot}$

Burdge et al. 2019, Nature, 571, 528

How to find a Close Binary Systems? **Eclipsing Binaries**

Light Curve Periodicity

Identify with Stellar Spectra

From ZTF Imaging, Eclipsing binary candidates Burdge et al. 2020, ApJ, 905, 32 ZTF Camera: FoV: 45 deg²

Spectroscopic Follow-up Confirmation

Machine

20 Binary Systems with Period < 1 hour

ZTF/PTF Short-period Binaries							
Name	R.A. (h:m:s)	Decl. (d:m:s)	Orbital Period (minutes)	Nature of Photometric Variability	Spectroscopic Characteristics		
ZTF J1539+5027 (1)	15:39:32.16	+50:27:38.72	6.91	Eclipsing+irradiation	DA, double-lined		
ZTF J0538+1953	05:38:02.73	+19:53:02.89	14.44	Eclipsing+irradiation	DA, double-lined		
ZTF J1905+3134	19:05:11.34	+31:34:32.37	17.20	Eclipsing high state AM CVn	Double-peaked He II emission		
PTF J0533+0209 (2)	05:33:32.06	+02:09:11.51	20.57	Ellipsoidal	DBA single-lined		
ZTF J2029+1534	20:29:22.31	+15:34:30.97	20.87	Eclipsing	DA, double-lined		
ZTF J0722-1839	07:22:21.49	-18:39:30.57	23.70	Eclipsing	DA, double-lined		
ZTF J1749+0924	17:49:55.30	+09:24:32.40	26.43	Eclipsing	DA, double-lined		
ZTF J2228+4949	22:28:27.07	+49:49:16.44	28.56	High State AM CVn	Double-peaked He II emission		
ZTF J1946+3203	19:46:03.89	+32:03:13.13	33.56	Eclipsing+Ellipsoidal	DAB/sdB, single-lined		
ZTF J0643+0318	06:43:36.77	+03:18:27.45	36.91	Accreting He star	He I absorption/He II emission		
ZTF J0640+1738	06:40:18.69	+17:38:45.01	37.27	Ellipsoidal	sdB, single-lined		
ZTF J2130+4420 (3)	21:30:56.71	+44:20:46.42	39.34	Ellipsoidal	sdB, single-lined		
ZTF J1901+5309 (4)	19:01:25.42	+53:09:29.27	40.60	Eclipsing	DA, double-lined		
ZTF J2320+3750	23:20:20.43	+37:50:30.84	55.25	Ellipsoidal	DA, single-lined		
ZTF J2055+4651 (5)	20:55:15.98	+46:51:06.45	56.35	Eclipsing+Ellipsoidal	sdB, single-lined		

Table 1

Note. Coordinates and basic photometric and spectroscopic characteristics of the 15 short-period binaries discovered so far using PTF/ZTF data. Coordinates are taken from Gaia DR2 and are in J2015.0. For apparent magnitudes, see Table 2. More precise orbital periods and uncertainties are reported in Table 3. Please note that in the spectroscopic characteristics column, a DA atmosphere indicates a hydrogen rich white dwarf atmosphere, DBA a helium rich with traces of hydrogen atmosphere, and DAB a hydrogen rich with traces of helium atmosphere.

References. (1) Burdge et al. (2019a), (2) Burdge et al. (2019b), (3) Kupfer et al. (2020b), (4) Coughlin et al. (2019), (5) Kupfer et al. (2020a).

Burdge et al. 2020, ApJ, 905, 32

Figure 8. Hertzsprung–Russell diagram illustrating the dereddened locations of 14 binaries in the sample with spectroscopic distances (ZTF J0643+0318 is omitted, as its modeling is ongoing). The red stars represent objects that are in our sample, with absolute luminosities calculated based on their spectroscopic distances. Most objects cluster between absolute magnitudes of 6.5 and 10.0, with the exception of the systems containing either He-burning stars or young and hot He WDs (which contribute significant additional luminosity, dwarfing both the luminosity of the companion WD and any accretion luminosity). The background color–magnitude diagram (CMD) is the sample of all stars in Gaia within 100 pc that have reliable astrometric solutions.

Burdge et al. 2020, ApJ, 905, 32

1,027,672 Stars visible from Tomoe-Gosen DEC > -30, m < 17th mag from GAIA DR3

Target : 244 Stars : parallax SNR>10 : m_G <17th mag : Dec>-30

Back on the Envelope Estimate 0.7 Solar Mass Binary => 2.0 Roche Limit

Period (Min)	Time to Merge (Year)	Relative Fraction
120	1.63 x 10 ⁸	1955.5
60	2.57 x 10 ⁷	307.9
15	6.39 x 10 ⁵	7.63
7	8.30 x 104	1.00
3	8.67 x 10 ³	0.10

244 Targets x 5% (eclipsing fraction based on TESS) =>12 Systems

§2 : White Dwarf Binaries

White Dwarf HR diagram

By Sihao Cheng

Cooling

Delayed

Cooling

Finding Companions

White Dwarf Resolved Binaries

P=120 min : Distance=0.003AU

Finding Unresolved WD Binaries 20 Binary Systems with Period < 1 hour

ZIF/FIF Snon-period Binaries							
Name	R.A. (h:m:s)	Decl. (d:m:s)	Orbital Period (minutes)	Nature of Photometric Variability	Spectroscopic Characteristics		
ZTF J1539+5027 (1)	15:39:32.16	+50:27:38.72	6.91	Eclipsing+irradiation	DA, double-lined		
ZTF J0538+1953	05:38:02.73	+19:53:02.89	14.44	Eclipsing+irradiation	DA, double-lined		
ZTF J1905+3134	19:05:11.34	+31:34:32.37	17.20	Eclipsing high state AM CVn	Double-peaked He II emission		
PTF J0533+0209 (2)	05:33:32.06	+02:09:11.51	20.57	Ellipsoidal	DBA single-lined		
ZTF J2029+1534	20:29:22.31	+15:34:30.97	20.87	Eclipsing	DA, double-lined		
ZTF J0722-1839	07:22:21.49	-18:39:30.57	23.70	Eclipsing	DA, double-lined		
ZTF J1749+0924	17:49:55.30	+09:24:32.40	26.43	Eclipsing	DA, double-lined		
ZTF J2228+4949	22:28:27.07	+49:49:16.44	28.56	High State AM CVn	Double-peaked He II emission		
ZTF J1946+3203	19:46:03.89	+32:03:13.13	33.56	Eclipsing+Ellipsoidal	DAB/sdB, single-lined		
ZTF J0643+0318	06:43:36.77	+03:18:27.45	36.91	Accreting He star	He I absorption/He II emission		
ZTF J0640+1738	06:40:18.69	+17:38:45.01	37.27	Ellipsoidal	sdB, single-lined		
ZTF J2130+4420 (3)	21:30:56.71	+44:20:46.42	39.34	Ellipsoidal	sdB, single-lined		
ZTF J1901+5309 (4)	19:01:25.42	+53:09:29.27	40.60	Eclipsing	DA, double-lined		
ZTF J2320+3750	23:20:20.43	+37:50:30.84	55.25	Ellipsoidal	DA, single-lined		
ZTF J2055+4651 (5)	20:55:15.98	+46:51:06.45	56.35	Eclipsing+Ellipsoidal	sdB, single-lined		

Table 1 ZTF/PTF Short-period Binaries

Note. Coordinates and basic photometric and spectroscopic characteristics of the 15 short-period binaries discovered so far using PTF/ZTF data. Coordinates are taken from Gaia DR2 and are in J2015.0. For apparent magnitudes, see Table 2. More precise orbital periods and uncertainties are reported in Table 3. Please note that in the spectroscopic characteristics column, a DA atmosphere indicates a hydrogen rich white dwarf atmosphere, DBA a helium rich with traces of hydrogen atmosphere, and DAB a hydrogen rich with traces of helium atmosphere.

References. (1) Burdge et al. (2019a), (2) Burdge et al. (2019b), (3) Kupfer et al. (2020b), (4) Coughlin et al. (2019), (5) Kupfer et al. (2020a).

Burdge et al. 2020, ApJ, 905, 32

§3 : Spectroscopic Binaries Finding Unresolved WD Binaries SDSS 26,801 Spectra Entropy based Kullback-Leibler divergence

§4 : X-ray binaries Back on the Envelope Calculation

- Closest Black Hole Candidate => 290 pc
- 10⁸ Black Holes in Milky Way
- Roughly 1/1000
- Within 200pc, 1,807,116 GAIA stars
- 2000 BHs?

- Half of the population is in binary => 1000 BHs
- Natural to believe "Blackhole White Dwarf" Binary exists!

Blackhole - White Dwarf Candidate

Tomoe-Gozen Proposal

- Monitor 244 HR Valley Stars
- 4198 White Dwarfs x eROSITA sources
- 244+4198=4442 Stars to be recorded!
- Spectroscopic Follow-up by Lick (KAST / APF)

Science Goals:

Binary Census = GW Background = SNIa Progenitor Discover Closest Blackhole through Binary Motion