小惑星が経験した衝突イベント時期を ライトカーブから推定する方法

浦川 聖太郎 ${ }^{1}$ ，大澤 亮 ${ }^{2}$ ，酒向 重行 ${ }^{2}$ ，奥村 真一郎 ${ }^{1}$ ，櫻井 友里 ${ }^{3}$ ，高橋 隼 4 ，今村 和義 ${ }^{5}$ ，内藤 博之 ${ }^{6}$ ，岡崎 良 ${ }^{7}$ ，関口 朋彦 ${ }^{7}$ ，石黒 正晃 ${ }^{8}$ ，道上 達広 ${ }^{9}$ ，吉川 真 ${ }^{10}$ ，Tomo－e Gozenメンバー
${ }^{1}$ 日本スペースガード協会， 2 東京大学，3岡山大学，4兵庫県立大学，5阿南市立科学 センター，6なよろ市立天文台，${ }^{7}$ 北海道教育大学，${ }^{8}$ ソウル大学， 9 近畿大学，${ }^{10}$ JAXA

今日のはなし

- 昨年のおさらい
- 小惑星における衝突事象
- 小惑星ライトカーブから衝突時期を推定
- Tomo－e Gozenを用いた観測的惑星科学の新展開

昨年のおさらい

- 小惑星2012 TC4が地球に約50000kmまで接近
- Tomo－e Gozenで観測（2017年10／9－11）
- 高速で歳差回転をしている一枚岩小惑星
- 自転周期：8．47分 歳差周期： 12.25 分
- 直径： $8 \mathrm{~m}(6-20) \mathrm{m}$
- パンケーキのような形。衝突破片であろう。
- NEW！母天体での衝突時期を推定

研究の効能：小惑星の衝突時期からわかること

Tomo－eの観測により2012 TC4母天体の衝突破壊時期を推定することができた

－惑星を作る元になった天体（微惑星）の構造を解明する。
－天体の衝突破壊•衝突合体•再集積の過程でどの ようなことが起こるのかを解明する。

」
微惑星から惑星までの成長を解明

キーワード
－ラブルパイル天体 ：がれきの寄せ集めの ような天体
－衝突破壊•衝突合体：天体同士が衝突 すると，互いに破壊しあう場合と合体し て1つの天体になる場合がある
－再集積：衝突によってばらばらになった破片が重力で集まること

研究の効能：小惑星の衝突時期からわかること

衝突はメインベルト小惑星から地球接近小惑星へ軌道進化させるトリガー

（ISAS二ュース 吉川 1998）

衝突やヤルコフスキー効果による僅かな軌道変化で，小惑星が共鳴帯に侵入。短時間で，地球に近づく軌道へ進化

衝突事象であれば，タンブリング運動が起こる タンブリング運動が継続している小惑星は比較的最近に衝突事象を経験したのでは？

宇宙風化の影響がない表面：タンブリング小惑星は太陽系形成期の情報があるかも

小惑星内部の歪みなどの内部工ネルギー散逸で，安定な回転に落ち着く

外力のない剛体の運動の物理｜

$\psi:$ 長軸周りの回転
φ ：短軸周りの回転
$\theta:$ 全回転角運動量ベクトルと長軸がなす角
L_{1} ：長軸長さ
L_{i} ：中間軸長さ
L_{s} ：短軸長さ
I_{1} ：長軸周りの慣性モーメント
I_{i} ：中間軸周りの慣性モーメント
I_{s} ：短軸周りの慣性モーメント

外力のない剛体の運動の物理II

オイラー角で運動を表記

長軸回転モード

短軸回転モード
ψ ：自転

$$
I_{l} \leq \frac{M^{2}}{2 E}<I_{i}
$$

θ ：章動
M ：全回転角運動量

世：
歲厓 $I_{i}<\frac{M^{2}}{2 E} \leq I_{s}$

ライトカーブから形状や回転状態を推定

入力値観測結果

自転周期

直径

出力

3軸比や回転状態

長軸非主軸回転モード

モデルその1 ： $6.2 \mathrm{~m} \times 8.0 \mathrm{~m} \times 14.9 \mathrm{~m}$

 モデルその2 ： $3.3 \mathrm{~m} \times 8.0 \mathrm{~m} \times 14.3 \mathrm{~m}$モデルその1：
$\theta=29.0 \mathrm{deg}, \mathrm{d} \varphi / \mathrm{dt}=29.4 \mathrm{deg} / \mathrm{min}$
モデルその2：
$\theta=48.5 \mathrm{deg}, \mathrm{d} \varphi / \mathrm{dt}=29.4 \mathrm{deg} / \mathrm{min}$

－弾性体の回転－

小惑星は完全剛体ではない
引つ張りや歪みのエネルギーに回転工 ネルギーが使われる（内部エネルギー散逸）
$=>$ 最小工ネルギ一状態（短軸純粋回転）へ

Excitation timeから衝突時期を推定

長軸非主軸回転モード

Excitation time

短軸非主軸回転モード
\int Damping time

短軸純粋回転モード

衝突はいつ起こったか

Excitation time（Damping timeも同様なパラメータに依存）

$T_{1}=D_{1}\left(h_{1}, h_{2}\right) \frac{\left(h_{1}^{2}\left(1+h_{2}^{2}\right)\right)^{3} h_{1}^{2} \mu Q P_{\phi}^{3}}{\left(1+h_{1}^{2} h_{2}^{2}\right)^{3} 2 \pi^{3} \rho D_{m}^{2}}, \begin{aligned} & \text { 直径が大きく重たい，ゆっくりした自 } \\ & \begin{array}{l}\text { 転をする小惑星のタンブリング運動は } \\ \text { すぐに安定する }\end{array}\end{aligned}$
Shape parameter

$$
D_{1}\left(h_{1}, h_{2}\right)=\left[\frac{h_{1}^{2}\left(1-h_{1}^{2}\right)\left(1+h_{2}^{2}\right)}{5\left(1+h_{1}^{2} h_{2}^{2}\right)}\right] \int_{\theta_{1}^{0}}^{\theta_{1}^{\prime}} \frac{\sin \theta_{1} \cos \theta_{1}}{\Psi_{1}} d \theta_{1}, \quad h_{1} \equiv L_{i} / L_{l}, h_{2} \equiv L_{s} / L_{i}
$$

μ ：elastic module $=10^{9}$ Q：quality factor $=100 \rho$ ：密度 $=3000 \mathrm{kgm}^{-3}$
D_{m} ：直径 $=8 \mathrm{~m} \mathrm{P}_{\varphi}$ ：歳差周期
$\theta:$ 章動角（モデル1 0.1 度 $=>29.0$ 度まで積分，モデル2 0.1 度 $=>48.5$ 度まで積分）
Ψ_{1} ：エネルギー損失率の無次元ファクター

$$
\begin{aligned}
& \Psi_{1}=Z_{1}^{5}\left(P_{1}\left(k_{1}\right) M_{13}+P_{2}\left(k_{1}\right) M_{12}+P_{3}\left(k_{1}\right) M_{0}+P_{4}\left(k_{1}\right) M_{23}\right) \\
& Z_{s}=\frac{\Omega_{s}}{\tilde{\omega}_{s}}=\frac{\pi n_{s}}{2 a_{s} \mathrm{~K}_{s}} . \quad N=\frac{32}{35}\left(\frac{h_{12}^{2}}{\left(1-h_{1}^{2}\right)\left(1-h_{2}^{2}\right)\left(1-h_{12}^{2}\right)}\right)^{2} \quad M_{0}=\frac{N}{3 h_{2}^{4} N_{9}} \sum_{j=1}^{8} N_{j} h_{2}^{2 j} . \\
& P_{1}\left(k_{s}\right)=\sum_{p=1}^{\infty} \frac{(2 p-1)^{3} \mathrm{q}_{s}^{2 p-1}}{\left(1-\mathrm{q}_{s}^{2 p-1}\right)^{2}} \quad M_{13}=N\left(1-h_{1}^{4}\right)\left(1-h_{2}^{4}\right)\left(2-\frac{5 h_{2}^{4}}{5+8 h_{1}^{2}+15 h_{2}^{2}+5 h_{12}^{2}}\right), \\
& P_{2}\left(k_{s}\right)=\sum_{p=1}^{\infty} \frac{(2 p-1)^{3} \mathrm{q}_{s}^{2 p-1}}{\left(1+\mathrm{q}_{s}^{2 p-1}\right)^{2}}, \quad M_{23}=N\left(1-h_{12}^{4}\right)\left(1-h_{1}^{4}\right)\left(2-\frac{5 h_{1}^{4} h_{2}^{2}}{8+5 h_{1}^{2}+5 h_{12}^{2}\left(1+3 h_{1}^{2}\right)}\right), \\
& P_{3}\left(k_{s}\right)=\sum_{p=1}^{\infty} \frac{(2 p)^{3} \mathrm{q}_{s}^{2 p}}{\left(1-\mathrm{q}_{s}^{2 p}\right)^{2}}, \quad M_{12}=N \frac{\left(1-h_{12}^{4}\right)\left(1-h_{2}^{4}\right)}{h_{2}^{4}}\left(2-\frac{5}{15+5 h_{2}^{2}+h_{12}^{2}\left(5+8 h_{2}^{2}\right)}\right) . \\
& P_{4}\left(k_{s}\right)=\sum_{p=1}^{\infty} \frac{(2 p)^{3} \mathrm{q}_{s}^{2 p}}{\left(1+\mathrm{q}_{s}^{2 p}\right)^{2}}, \quad \text { (B4)}
\end{aligned}
$$

(Breiter et al. 2012)

Using an auxiliary variable
$\xi=\left(h_{1}+h_{1}^{-1}\right)^{2}$,
(B6)
we can compress N_{j} to read

$$
\begin{aligned}
& N_{0}=225(\xi-1) \\
& N_{1}=6\left(1+h_{1}^{2}\right)(29 \xi-21), \\
& N_{2}=h_{1}^{2}\left(31 \xi^{2}+82 \xi-62\right), \\
& N_{3}=h_{1}^{2}\left(1+h_{1}^{2}\right)\left(-92 \xi^{2}+305 \xi-216\right), \\
& N_{4}=h_{1}^{4}\left(31 \xi^{3}-341 \xi^{2}+99 \xi+295\right), \\
& N_{5}=h_{1}^{4}\left(1+h_{1}^{2}\right)\left(174 \xi^{3}-1012 \xi^{2}+1185 \xi-458\right), \\
& N_{6}=h_{1}^{6}\left(225 \xi^{4}-1404 \xi^{3}+2412 \xi^{2}-1409 \xi-124\right), \\
& N_{7}=h_{1}^{6}\left(1+h_{1}^{2}\right)\left(225 \xi^{3}-1179 \xi^{2}+1376 \xi-368\right), \\
& N_{8}=h_{1}^{8}(3 \xi-4)\left(75 \xi^{2}-292 \xi+64\right)
\end{aligned}
$$

(B7)
(B9)
(B10)
(B11)
(B12)

$$
\begin{aligned}
N_{9}= & 48 \xi-57+h_{1}^{2} h_{2}^{4}\left(48 \xi^{2}-119 \xi+100\right) \\
& +h_{2}^{2}\left(1+h_{1}^{2}\right)\left(32 \xi-23+h_{1}^{2} h_{2}^{4}(39 \xi-44)\right) \\
& +16 h_{1}^{4} h_{2}^{8}(3 \xi-4) .
\end{aligned}
$$

衝突はいつ起こったか

衝突イベント発生／レゾナンスに入りNEO領域へ

3.1×10^{5} 年前（モデル 1 ）$/ 3.2 \times 10^{5}$ 年前（モデル 2 ）

短軸非主軸回転モードへ

2.7×10^{5} 年後（モデル1）／1．8×105年後（モデル2）
短軸純䊀回転モードへ
$1.5 \times 10^{7 \text { 年後（モデル } 1) / 3.8 \times 10^{7} \text { 年後（モデル2）}{ }^{\text {（モ }} \text {（ }}$
$>10 \mathrm{~m}$ サイズNEOの軌道力学的寿命：数百万年（Morbidelli et al．2002）

- $2012 \mathrm{TC}_{4}$ はタンブリング小惑星
- 自転周期8．47分，歳差周期 12.25 分

1 6． $2 \mathrm{~m} \times 8.0 \mathrm{~m} \times 14.9 \mathrm{~m}($ モデル 1$) / 3.3 \times 8.0 \mathrm{~m} \times 14.3 \mathrm{~m}$（モデル2）
•運動モデルを作成（章動角29．0度（モデル1）／48．5度（モデル2））

- 衝突破片一枚岩小惑星
- 長軸非周期回転していれば衝突時期の推定が可能

D $\approx 3 \times 10^{5}$ 年前に衝突を経験／フレッシュな表面組成

Tomo－eによる観測的惑星科学の新展開｜

－掩蔽観測による冥王星（準惑星）やTNOの希薄大気の観測（岡山大， はしもとじょーじ氏）

日心距離の変わる冥王星の大気厚さは季節変化する。どのように変わるのだろうか？ （2019年7月17日，冥王星掩蔽観測）

冥王星以外の準惑星やTNOに大気はある のだろうか？（2019年6月28日，TNOクワ オワーの掩蔽観測）

Tomo－eの高時間分解ライトカーブで大気に よる減光を捉える

Tomo－eによるクワオワーによる掩蔽の様子（大澤氏提供）

Tomo－eによる観測的惑星科学の新展開II

－メインベルト彗星のような突発増光小天体の検出（ソウル大，石黒正晃氏）

メインベルト彗星 ：メインベルト帯の小惑星の彗星活動太陽系における揮発性物質はどこにあるのか？
小天体の衝突頻度はどのくらいか？見逃しているメインベルト彗星もあるはず。

彗星活動の原因

- 他天体衝突
- 氷の蒸発

Tomo－eによる全天サー ベイで既知小惑星の突発増光を捉える。超新星サーベイデータで できそう

Tomo－eは太陽系分野でも非常な強力なツール
ﾃ゙ータは増えるが人が増えない。。。

