

シュミットシンポジウムの参加人数の推移(2010-2019)

年

Sako et al. 2018, SPIE

the first wide-field CMOS camera

$T \square M \square \cdot \mathbf{E}$ $\mathbf{G} \square \mathbf{Z} \mathbf{E} \Pi$

- 東京大学木曽観測所105cmシュミット望遠鏡用
- · 視野20平方度
- 84台のCMOSセンサを搭載,計1億9000万画素
- ・ 毎秒2フレームを取得可能
- ・ 毎夜30テラバイトの動画ビッグデータを生成
- 自動観測と人工知能による宇宙突発現象の即時検出
- 2014年より開発を本格化(2014/9 御嶽山噴火災害)
- 2019年4月にカメラ完成(2019/9災害復興5周年)

木曽シュミット望遠鏡の焦点部に搭載されたトモエゴゼンカメラ

曲面上に精密配置したCMOS センサ

Wavelength (nm)

Survey power for transient events

Limiting magnitude

5- σ limiting magnitude

assuming same filter-bandwidth and pixel size

Tomo-e Gozen : $0.5 \text{ sec/frame}, N_{read}=2 \text{ e-}$ PanSTARRS, ZTF : $30 \text{ sec/frame}, N_{read}=5 \text{ e-}$ LSST : $60 \text{ sec/frame}, N_{read}=10 \text{ e-}$

Intensive Science Programs

1. Transient survey

- $Elv > 40 deg (7,000 deg^2) every 2 hours$
- 3 visits per night
- Record all events < 20 mag (dark clear night)
- SNs, Novae, variables

2. Follow-up / Simultaneous

- GWs, neutrinos
- FRBs, NSs, BBHS, meteors, NEO,

3. Fixed FoV + high-speed

- 2-fps@ 20 deg² -- 200-fps@ 52" x 38"
- Occultation of TNOs, YSOs, flares, FRBs, NSs, BBHs, meteors, NEOs

- Each circle: FoV with $\Phi9~deg$
- Yellow: Milky way

ロゴをつくりました

$T \square M \square \cdot \mathbf{P}$ $\mathbf{G} \square \mathbf{Z} \mathbf{P} \Pi$

トモエゴゼン

Institute of Astronomy, the University of Tokyo

Director: M. Doi

+ Initially, the survey data can be accessed by only Tomo-e members.

Tomo-e Gozen 関連研究費(2019年7月現在)

ご協力ありがとうございます

- 科研費基盤S (H28 H33)
 - 「高速掃天観測による連星中性子星合体現象の研究」,代表 茂山俊和
- 科研費基盤S(H30 H35)
 - 「爆発直後からの観測によるla型超新星の起源解明」, 代表 土居守
- 科研費基盤A (H28 H32)
 - 「高頻度広視野観測でつなぐ大質量星最期の姿と超新星爆発」, 代表 諸隈智貴
- 科研費基盤B(H30 H33)
 - 「太陽系外縁小天体の高速広域探査」, 代表 渡部潤一
- 科研費基盤B(H30 H33)
 - 「高速移動天体の検出による微小天体サイズ分布の解明」, 代表 奥村真一郎
- 科研費若手B(H30 H34)
 - 「動画分光観測による惑星間空間ダスト組成サーベイ」, 代表 大澤亮
- 新学術領域「 重力波・創世記 」(H29 H34)
 - B03「重力波の光赤外線対応天体観測で迫る中性子星合体の元素合成」,代表 吉田道利
- 新学術領域「重力波・創世記」B03研究領域提案型(H30 H32)
 - 「Tomo-e Gozenカメラによる重力波可視対応天体超広視野即時探査観測」, 代表 諸隈智貴
- JSTさきがけ(ビックデータ領域, H27-H31),終了
 - 「タイムドメイン宇宙観測用動画データの高速逐次処理法の開発」, 代表 酒向重行
- 国立天文台共同開発研究(H31-H32),新規
 - 「高速タイムドメイン観測用CMOSカメラモジュールの開発」, 代表 酒向重行
- 光赤外線大学間連携事業 (H29 H34), 東大リーダー諸隈智貴
- ビッグバン宇宙国際研究センター(RESCEU),メンバ茂山俊和,土居守,新納悠
- 東京大学木曽観測所運営費交付金

- 施設維持費, 光熱費, 装置開発費・維持費をのぞく

科研費基盤S代表土居守 『**爆発直後からの観測によるla型超新星の起源解明**』

Ia型超新星の起源の解明

国立天文台共同開発研究「高速タイムドメイン観 測用CMOSカメラモジュールの開発」,代表酒向

東京大学6.5mTAO 望遠鏡で追観測

木曽トモエゴゼンで Ia型超新星を発見

Publications

- Urakawa et al., "Shape and Rotational Motion Models for Tumbling and Monolithic Asteroid 2012 TC4: High Time Resolution Light Curve with the Tomo-e Gozen Camera", The Astronomical Journal, Volume 157, Issue 4, article id. 155, 13 pp. (2019)
- 2. Ohsawa et al., "Luminosity function of faint sporadic meteors measured with a wide-field CMOS mosaic camera Tomo-e PM", Planetary and Space Science, Volume 165, p. 281-292. (2019)
- 3. 平成30年度 東京大学天文学専攻修士論文発表会 (2019/3), 小島氏

Press release

- 1. 東京大学木曽観測所による地球接近小惑星2019 FAの発見について (2019/3/20)
- 2. トモエゴゼンによる最初の超新星2019cxxの発見(2019/4/5)

Outreach

- 1. 国立天文台野辺山特別一般公開2018 (国立天文台野辺山宇宙電波観測所, 2018/8/25)
- 2. 第3回「長野県は宇宙県」ミーティング(木曽町文化交流センター, 2019/2/18)

Presentations

- 1. Annual European Meeting on Atmospheric Studies by Optical Methods (Kiruna, Sweden, 2018/08/27–31)
- 2. データ利活用研究コミュニティワークショップ(東京大学伊藤国際学術研究センター, 2018/9/5)
- 3. 日本天文学会2018年秋季年会 (兵庫県立大学、2018/09/19-21),5件
- 4. 第62回宇宙科学連合講演会(久留米シティプラザ, 2018/10/24-26)
- 5. 第11回スペースガード研究会(千葉工業大学東京スカイツリータウンキャンパス, 2018/11/01)
- 6. 新学術領域「重力波物理学天文学・創世記」領域シンポジウム(京都大学, 2018/11/26-28)
- 7. 第8回 スペースデブリワークショップ (8th Space Debris Workshop, 調布JAXA, 2018/12/03-05)
- 8. 第9回光赤外線天文学大学間連携ワークショップ(埼玉大学, 2018/12/25,26), 2件
- 9. Time Domain Astronomy in the Era of Massively Multiplexed (2019/02/08-10)
- 10. データサイエンスの研究会(理化学研究所, 2019/04/25)
- 11. AMON workshop 2019 (千葉大学, 2019/05/21-22)
- 12. JPGU日本地球惑星科学連合2019年大会(幕張, 2019/05/26-30)
- 13. 天文学におけるデータ科学的方法,(統計数理研,2019/5/29)
- 14. Meteoroids 2019 (Bratislava, Slovakia, 2019/06/17-21)

Cyber space of Tomo-e Gozen

On-site computing system

Volatile data management system

東京大学データプラットフォーム

Society 5.0 内閣府 第 5 期科学技術 基本計画

たシステムにより、経済発展と社会的課題の解決

を両立する、人間中心の社会

- ・ 東大柏キャンパスにデータセンターを新設(2020年)
- 五神真総長が牽引するSociety5.0時代の実現に向けた計画。大容量ストレージ、計算処理装置を実装、SINET5に接続
- 大学がプラットフォームとなり、ベンチャーの活力・機動力を活かして社会課題を解決することをめざす。

シンポジウム「データ利活用のための政策と戦略-より良きデータ利活用社会のために-」(2018/11), 五神東大総長発表資料より

Society 5.0時代のTomo-e Gozen宇宙ビッグデータの利活用の多分野連携のビジョン

High speed network

Kiso Observatory will be connected to Kiso-Fukushima city via a 10-Gbps dedicated line by Aug. 2019.

10 Gbps bidirectional connection is achieved when SINET-5 is directly connected to Kiso-Fukushima city in future.

Operation

Browser use interface

Tomo-e transient survey

All sources can be followed by spectroscopy with 1 – 3 m class telescope

First wide-field movie survey

7,000 deg² - 2 hr cadence - <u>18 mag</u> depth

- no filter: effectively g+r (λ = 400 700 nm)
- [0.5 sec exposure] x 12 frames
- 6 sec exposure/visit
- ~7,000 deg² sky (El > 40 deg)
- 3-5 times visits per night

Targets

Supernovae, nova, pulsar, (GW), neutrino, comet, asteroid, meteor, occultation, NEO, debri, super-flare, dwarf star flare, CV, "Tomo-e Flash", YSO, Ultra-Long GRB, Fast Radio Burst, AGN, X-ray transient, unknown unknown.

2019年5月26日の試験観測

全天の天球図。中央の白い楕円領域が2019年3月16日深夜に東京大学木曽観測所から見える天域。多数の赤丸が 2019年5月26日夜にトモエゴゼンが観測した領域。1つの赤丸がトモエゴゼンが1回に観測できる領域(直径9°)

Tomo-e transient survey

P.I. Tomoki Morokuma (U-Tokyo)

including ~ 5 early

~1,000 supernovae including ~ 5 early phases could be discovered per year.

Very Early Phases of Core-Collapse Supernovae

Very Early Phases of Type Ia Supernovae

Single degenerate (SD) vs double degenerate (DD)

SN follow-up collaborators

Tomo-e transient survey

Hours timescale events

Classical novae

Brightness at pre-maximum halt corresponds to Eddington luminosity? \rightarrow use as standard candle.

YSO flares, dust obscuration

Mon567

Stauffer+2014

Maehara+

Optical

dav

Infrared

X-ray flares

Black hole binaries appears optical transient bursts.

MAXI team+

Exoplanet surrounding WD?

WD 1145+017

Black hole

Broken by tidal disruption? Minutes timescale variability is detected.

Ohsawa+

1 hour MRTH 348.3 Gänsicke +2016 CfA

Ishiguro+2013

17P/Holmes

1234

Super giant

MAXI X-ray detector

on ISS

Asteroid collisions

Rapid variabilities are observed

due to gas accretion and dust

disk in YSO system.

Search for evidences of a recent collision between two asteroids.

Ishiguro+

Mori+

Comet outbursts

Fresh material is emerged from inside in outbursts.

Sarugaku+

3. Survey

Tomo-e transient survey

~ 100 small-NEOs could be discovered per year.

Near earth objects (NEOs)

are asteroids or comets with a closest approach to the Sun (perihelion) of < 1.3 au. Their orbits are evolved from main belts.

Planetary defense is necessary for keeping human civilization!

ER14: from Mar. 4 2019

O3: from Apr. 1 2019

Tomo-e Gozen GW followups: from late Mar. 2019

NS-NS sensitivity

	O2 (Mpc)		O3 (Mpc)
LIGO/Hanford (H1)	70	\rightarrow	90
LIGO/Livingston (L1)	100	\rightarrow	135
Virgo (V)	27	\rightarrow	55
KAGRA			8 - 25

Reported on Feb. 15 2019

NS-NS event rate +

NS-NS localization

120 – 180 deg² with 90% credible (med) 10 - 20% of the area is localized < 20 deg²

Seconds or shorter **Tomo-e high-speed programs** timescale events **Peculiar light curves** WD+WD **Fast spinning WDs** of exoplanets 10,000 deg², 2-fps survey ~300 WDs would be found. Evaporating rocky planet? P = 1 - 100 secAlien's artificial planet? Fast spinning 1000 days t ~ 10 sec Kashiyama, Kawana+ Keplar's light curve Kawahara+ WD Background **Occultations of small Fast rotating asteroids** star **bodies** A few events per year Phase variations on color and albedo reflects their Light curve Km-size objects outer Neptune formation history. Duration time ~ 0.3 sec t ~ 1 sec Ultima Thule/NASA Urakawa+ Watanabe+ **Unknown** flashes **Faint meteors Optical counterparts of FRBs?** Interplanetary dust of < 1 mm Unknown high-energy burst? Use earth atmosphere as a Unknown objects near earth? detector

Unknown physics?

Unknown

unknown

 $t \ll 1 \sec$

Ohsawa+

t ≪ 1 sec

from ISS /NASA

Scheduling and Data sharing

• Tomo-e Transient Survey (Oct. 2019 – July 2020)

- Schedule: Basically every night, from Oct. 2019
- **Operation**: Full-automatic
- Authorization of data: TBD
- Data access: Via Kiso-VPN (until end pf 2020), external data center (from end of 2020)
- Data items:
 - Tables of transient events (SN, variables, NEOs...)
 - Cut-out images where transients are detected
 - Photometry tables of sources detected in co-added images
 - Reduced co-added FITS (optional)
 - Reduced cube-FITS (optional)

Campaign programs including GW follow-ups (Oct. 2019 – July 2020)

Proposal: Always accepted. Please contact to Kiso staff.

At least, a Tomo-e member must be included in the science team.

- Schedule : Scheduled by SAC members (TBD, basically Kiso staff)
- **Operation** : Semi-automatic with queue system. Classical is not supported.
- Authorization of data: Science team who proposed the program.
- Data access: TBD

All programs are conducted under risk share agreements. The Tomo-e Gozen is based on collaborative researches, but not an open-use projects.

今回がはじめてのテーマがたくさんあります

木曽シュミットシンポジウム2019 プログラム

2019年7月9~10日

会場 : 木曽福島・御料館(旧帝室林野局木曽支局庁舎)

			7/9(火)	_				7/10(水)
開始時間	終了時間	演者	タイトル		9:15	9:	35 3400	小惑星が経験した衝突イベント時期をライトカーブから推定する方法
9:30	9:35	小林	所長挨拶		9:35	9:	50 \$46011	Hough変換を用いた移動天体の検出
9:35	9:45	征矢野	就 那所報告		9:50	10:	10 奥村	Tomo-e Gozenと重ね合わせ法による高速移動NEO観利計画の進捗
9:45	10:05	酒向	Tomo-e Gozenāt画		10:10	10:	30 酒向	高速移動する地球接近失体の広視野探査
10:05	10:25	加加	Northern Sky Transient Survey 早谙化	Í	10:30	10:	15	休憩・午前1
10:25	10:45	池田	A Model for Scheduling High-Cadence Telescope Observations	i	10-45	11.	S STIL	- Tomo-a Gozani"上るminimoon開発
10:45	11:00		休憩・午前1		11:05	11:	25 荒川	光学観測による宇宙物体の動態推進に関する研究 人工天体
11:00	11:20	高永	Data analysis pipeline for SN survey		11:25	11:	15 PF80	京大MUレーダー流星ヘッドエコーとTomo-e Gozenによる微光流星同時観測の初期結果
11:20	11:40	浜崎	機械学習によるTransient検出の現状と展望	i	11:45	12:	のお母ご飯休憩	- +記念: +記念:
11:40	11:50	袋	Studying fast-brightening transients with the HSC-Tomo-e synergetic survey		10.50			
11:50	12:10	川端	京都大学3.8mせいめい望遠鏡・広島大学かなた望遠鏡による近傍超新星の追観測		12:50	13:		Status of KAGRA
12:10	12:18		ポスターセッション(各2分)		13:10	13:	SO WENN	Tomo-e Gozen による単力度フォローアック 配用実施状況 タ、広 E 同 吐 知 測
12:18	13:20		お昼ご飯休憩		13:30	13:	0 度内	RBと重力変シクテルの同時候出可能性について シルンドリーマローの「「「「「「」」」
13:20	13:40	松林	せいめい望遠鏡CMOS多色カメラによる突発天体・短時間変動天体サイエンス	ł	10.00			
13:40	14:00	福井	Tomo-eによる近傍重カマイクロレンズ探索の可能性 系外或足マイクロレン	ィズ	14:10	14:	20	休憩・午後1
14:00	14:20	有馬	Tomo-e Gozenで迫る特スケールでの可提突発天体探査		14:20	14:	10 一木	Tomo-e Q0/Q1によるCrab/(ルサーの電波・X線との同時観測
14:20	14:40	松山	The Hertz Spinning Object Survey		14:40	15:	20 山木	●ホテータのオンライン要約とその応用 異常検知
14-40	15.00		24篇,所说([15:00	15:	20	議論
14:40	15:00		Nati - 十級1					
15:00	15:20	安達	ブラックホールX線連星MAXI 31820+070の可視光放射の変動の解析				古澤	SMOKAの現状と利用状況
15:20	15:40	諸院	IceCubeニュートリノ電磁波対応天体サーベイ観測		ポスター		村田	X線連星の可視光・近赤外線追観測
15:40	16:00	森田	KWFCによるFermi/LAT γ 線源の時間変動観測				川名	Searching for the fastest spinning white dwarfs with Tomo-e Gozen
16:00	16:20	中嶋・宮内	木曽シュミット乾板のデジタル化 = 乾板スキャン作業のまとめ				酒向	東京大学本曽観則所トモエゴゼン計画の長野県SDGsへの貢献
16:20	16:40	古澤	木曽シュミット乾板のデジタル化-公開システムの開発	-				
16:40	16:55		休憩・午後2					
16:55	17:15	岩崎	狭帯域フィルターを使った金属欠乏星探査					
17:15	17:35	ШП	Tomo-e Gozen を用いたサーベイと即時分光による古典新星の初期段階の研究					
17:35	17:50	中田・大澤	長期モニタリング観測による星周ダスト形成の研究 晩期型星					
17:50	18:10	家	Spin Parity Distribution of Galaxies and Structure Formation of the Universe					
18:10	18:25	毛利	名古聖市科学館プラネクリウムでの科学データのビジュアライゼーション					
18:25	18:40		製金業 データ可担化					
18:40	20:40		第8会 ノーン 可 代化					

Fact sheet of the Tomo-e Gozen

Telescope	the Kiso 1.0-m f/3.1 Schmidt telescope,
	Kiso observatory, the University of Tokyo
Sensor	Canon 35MMFHDXM, 35-mm front-side-illuminated CMOS sensor with
	microlens array and AR coated cover glass
Sensor format	2,160 $ imes$ 1,200 pix chip ⁻¹ (total),
	2,000 $ imes$ 1,128 pix chip ⁻¹ (photosensitive)
The Number of sensor chips	84 chips
Field of view	$39.7' \times 22.4' \times 84 \text{ chips} = 20.8 \text{ deg}^2$
Pixel size and scale	19 mm pix ⁻¹ , 1.189" pix ⁻¹
Sensitive wavelength	370 to 730 nm
Photoelectric conversion efficiency	0.68 at a peak of 500 nm
Photosensitive area / package area	0.35
Filters	Pre-set: transparent windows, optical filters, grisms (optional)
	Changeable: 4 pieces of f2.5' with the FEX unit
Max frame rate	2 fps in full-frame, maximum 500 fps in partial-frame
Read noise (2 fps)	2.0, 4.1, 9.2 e ⁻ in High-, Mid-, Low-gains
Well depth (linearity < 5%)	6,000, 25,000, 53,000 e ⁻ in High-, Mid-, Low-gains
Dark current	0.5 e ⁻ sec ⁻¹ pix ⁻¹ at 290 K, 6 e ⁻ sec ⁻¹ pix ⁻¹ at 305 K
Sky background (dark night)	50 e ⁻ sec ⁻¹ pix ⁻¹ (transparent windows)
Gain conversion factor	0.23 , 0.94, 2.4 e ⁻ ADU ⁻¹ in High-, Mid-, Low-gains
5σ limiting mag (High-gain)	16.7, 18.5, 19.9 mag at t _{exp} of 0.1, 1, 10 sec w/transparent windows
Photometric stability	4 to 30 milli-mag (time scale < 5 sec)
	1 to 3 milli-mag (time scale > 100 sec)
Absolute time accuracy of time stamps	±0.2 millisecond
Stability of frame read time	10 ⁻⁵
Output file (full-frame)	4.9 MByte frame ⁻¹ , 16-bit cube FITS
Data production rate (full-frame, 2 fps)	830 MByte s ⁻¹ , 30 TByte night ⁻¹