
Scheduling High-Cadence Telescope Observations
An optimization approach

João Pedro Pedroso

INESCTEC and Faculty of Sciences, University of Porto

Joint work with:

Ï Shiro Ikeda, ISM
Ï Tomoki Morokuma, The University of Tokyo
Ï Shigeyuki Sako, The University of Tokyo

Kiso Symposium, Kiso, July 2019



The problem

Situation (my understanding):
Ï Telescope used for detecting supernovae right after explosions

Ï rapid increase in observed flux, requiring multiple observations
during a night

Ï Strategy:
Ï take successive images of a given zone
Ï check for differences between them

Ï In this context:
Ï try to observe the whole visible celestial sphere
Ï repeat some time later
Ï there must be a minimum delay between successive images
Ï aim: maximize the number of observations made
Ï in other words, minimize the time lost

Ï telescope movements
Ï waiting time



Background: optimization tools



Background: optimization tools

Consider the following situation:
Ï 7 positions to observe in the sky
Ï Each position

Ï has an expected reward
Ï requires a certain time to be photographed

Ï A telescope is available for a limited time



Example

Ï Data: Position: 1 2 3 4 5 6 7
Reward: 7 2 4 9 1 2 3
Time: 12 8 11 19 5 2 5

Ï Total available time: 30
Ï How can we solve the problem?

Ï Mathematical formulation: knapsack problem
Ï Variables: x1,x2,x3,x4,x5,x6,x7

Ï xi = 1 if we photograph position i , 0 otherwise
Ï binary variables, constrained to values 0 or 1

Ï Objective:
Ï maximize 7x1+2x2+4x3+9x4+x5+2x6+3x7

Ï Constraint:
Ï subject to 12x1+8x2+11x3+19x4+5x5+2x6+5x7 ≤ 30



Example

Ï Data: Position: 1 2 3 4 5 6 7
Reward: 7 2 4 9 1 2 3
Time: 12 8 11 19 5 2 5

Ï Total available time: 30
Ï How can we solve the problem?
Ï Mathematical formulation: knapsack problem

Ï Variables: x1,x2,x3,x4,x5,x6,x7
Ï xi = 1 if we photograph position i , 0 otherwise
Ï binary variables, constrained to values 0 or 1

Ï Objective:
Ï maximize 7x1+2x2+4x3+9x4+x5+2x6+3x7

Ï Constraint:
Ï subject to 12x1+8x2+11x3+19x4+5x5+2x6+5x7 ≤ 30



Mathematical formulation

Knapsack problem: more concisely:

maximize
∑
j

vjxj

subject to
∑
j

wjxj ≤W

xj ∈ {0,1} ∀j



How to solve it – with Gurobi and Python
Simply describe the problem, and send it to a general purpose solver

1 from gurobipy import *
2 m = Model()
3 x = {}
4 for i in range(1,8):
5 x[i] = m.addVar(vtype="B")
6 m.addConstr(12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30)
7 m.setObjective(7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7], GRB.MAXIMIZE)
8 m.optimize()
9 for i in range(1,8):

10 print(x[i].X)

1 Optimal solution found (tolerance 1.00e-04)
2 Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0000%
3 1.0
4 0.0
5 1.0
6 0.0
7 0.0
8 1.0
9 1.0



How to solve it – with Gurobi and Python
Simply describe the problem, and send it to a general purpose solver

1 from gurobipy import *
2 m = Model()
3 x = {}
4 for i in range(1,8):
5 x[i] = m.addVar(vtype="B")
6 m.addConstr(12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30)
7 m.setObjective(7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7], GRB.MAXIMIZE)
8 m.optimize()
9 for i in range(1,8):

10 print(x[i].X)

1 Optimal solution found (tolerance 1.00e-04)
2 Best objective 1.600000000000e+01, best bound 1.600000000000e+01, gap 0.0000%
3 1.0
4 0.0
5 1.0
6 0.0
7 0.0
8 1.0
9 1.0



How to solve it – with a modeling language
Simply describe the problem in a modeling language, and send it to
a general purpose solver

1 ampl: var x {1..7} binary;
2 ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
3 ampl: subject to Capacity:
4 12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30;
5 ampl: solve;

1 Academic license - for non-commercial use only
2 Gurobi 8.0.1: optimal solution; objective 16
3 2 simplex iterations
4 1 branch-and-cut nodes
5 ampl: display x;
6 x [*] :=
7 1 1
8 2 0
9 3 1

10 4 0
11 5 0
12 6 1
13 7 1
14 ;



How to solve it – with a modeling language
Simply describe the problem in a modeling language, and send it to
a general purpose solver

1 ampl: var x {1..7} binary;
2 ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
3 ampl: subject to Capacity:
4 12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30;
5 ampl: solve;

1 Academic license - for non-commercial use only
2 Gurobi 8.0.1: optimal solution; objective 16
3 2 simplex iterations
4 1 branch-and-cut nodes
5 ampl: display x;
6 x [*] :=
7 1 1
8 2 0
9 3 1

10 4 0
11 5 0
12 6 1
13 7 1
14 ;



How to solve it?

General-purpose optimization solvers:
Ï No need to know what methods are used for solving
Ï Very powerful:

Ï most of the underlying optimizatin problems are NP-hard
Ï in the worst case, take exponential time in terms of the size of

the problem
Ï but in practice, even very large problems can be solved

Ï often, thousands or millions of variables and/or constraints
Ï Convenient way to get a proven optimum

Ï even open source solvers involve years of development



The problem



The problem

Ï There is a set of positions to be observed in the sky
Ï Each of them can be observed on a given configuration of the
telescope

Ï We want to
Ï minimize unproductive time
Ï maximize the number of positions observed 3 times during the
night

Ï Difficulty: sky "moves" during the night
Ï setup between two telescope positions is time-dependent



Background



Background



Figure



An optimization model



An optimization model

maximize
∑
k∈K

zk

subject to
∑
i∈I

xit ≤ 1 for t = 0, . . . ,T

xi ,t−1 =
∑
j∈I

wijt ∀i ∈ I ,t = 1, . . . ,T

xjt =
∑

i∈I :t−cij>0
wij ,t−cij ∀j ∈ I ,t = 1, . . . ,T

yk0 = 0 ∀k ∈K
ykt ≤

∑
i∈I

aiktxit ∀k ∈K ,t = 1, . . . ,T

min(T ,t+dk )∑
t ′=t

ykt ′ ≥ dk(ykt −yk ,t−1) ∀k ∈K ,t = 1, . . . ,T

zk ≤
T∑
t=1

ykt ∀k ∈K

(all variables are binary)



Data

Ï K → set of positions to be observed in the sky
Ï I → set of positions in the telescope
Ï T → number or periods to consider (time discretization)
Ï aikt → connect telescope and sky’s positions:

Ï aikt = 1 if at period t telescope in position i ∈ I observes sky’s
position k ∈K

Ï aikt = 0 otherwise

Ï cij → time necessary to move the telescope from position i to j

Ï dk → time necessary to make observation at sky’s position k



Variables

Ï Main decision variables:
Ï xit = 1 if telescope is on position i at period t
Ï xit = 0 otherwise

Ï Telescope movement:
Ï wijt = 1 if at period t telescope moves from position i to
position j (possibly, j = i)

Ï Observed: (determined in terms of x)
Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise

Ï Positions observed: (determined in terms of y)
Ï zk = 1 if sky’s position k has been observed



Constraints (#1)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

At each period, telescope is (at most) in one position∑
i∈I

xit ≤ 1 for t = 0, . . . ,T



Constraints (#2)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

If the telescope was in position i at t−1, then at t it must move to
some (possibly the same) position

xi ,t−1 =
∑
j∈I

wijt ∀i ∈ I ,t = 1, . . . ,T

Ï if xi ,t−1 = 1, then one of the wijt must be non-zero



Constraints (#3)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

For being in position j at period t, the telescope must have been in
a position i (possibly the same) early enough to move to j

xjt =
∑

i∈I :t−cij>0
wij ,t−cij ∀j ∈ I ,t = 1, . . . ,T



Constraints (#4)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

No observations can be made at t = 0

yk0 = 0 ∀k ∈K



Constraints (#5)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed
Ï aikt → 1 if at period t telescope in position i ∈ I observes sky’s position k ∈K

Observing sky’s position k at period t is only possible if the
telescope is in a position from which k can be observed

ykt ≤
∑
i∈I

aiktxit ∀k ∈K ,t = 1, . . . ,T



Constraints (#6)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed
Ï dk → time necessary to make observation at sky’s position k

If an observation at point k has started in period t, then the same
position must be observed at least dk successive periods

min(T ,t+dk )∑
t ′=t

ykt ′ ≥ dk(ykt −yk ,t−1) ∀k ∈K ,t = 1, . . . ,T

Ï observing point k starts in period t iff yk ,t−1 = 0 and ykt = 1
Ï in that case, the right-hand side is positive
Ï otherwise, the constraint becomes redundant



Constraints (#7)

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

A position is counted in the objective only if it was observed at
some valid period

zk ≤
T∑
t=1

ykt ∀k ∈K



Objective

Ï xit = 1 if telescope is on position i at period t

Ï wijt = 1 if at period t telescope moves from position i to position j

Ï ykt = 1 if sky’s position k is observed at period t, 0 otherwise
Ï zk = 1 if sky’s position k has been observed

Objective: maximize the number of positions observed:

maximize
∑
k∈K

zk



Refinements: second-time observations

Ï What happens if all the positions can be observed?
Ï We should take into account second-time observations

Ï also third-time, fourth-time, . . .
Ï Additional variables:

Ï y ′
kt = 1 if position k is observed for the second time at some
period t

Ï y ′
kt = 0 otherwise



Refinements: second-time observations

Ï A minimum number of periods (∆) must elapse since the first
observation

Ï In other words: y ′
ks must be zero for ∆ periods after period t

at which ykt changed from 1 to 0
Ï Additional constraints (∀k ∈K ,t = 1, . . . ,T ):

y ′
kt ≤ 1− (yk ,t−1−ykt)

y ′
k ,t+1 ≤ 1− (yk ,t−1−ykt)

. . .

y ′
k ,t+∆ ≤ 1− (yk ,t−1−ykt)

Ï A new variable z ′k is needed for counting the number of
second-time observations (as with zk)

Ï Extension for three-times observations: z ′′k



Objective: maximize the number of three-times observations

maximize
∑
k∈K

z ′′k



Issues

Ï The previous model is good, but. . .
Ï Is it acceptable in practice?

Ï For a typical instance:
Ï sky positions: > 300 → ∼ 100000 arc variables
Ï time discretization:

Ï each image: ∼ 48 seconds
Ï each movement: from a few seconds to ∼ 1 minute

Ï If we discretize to 1 second: > 4000 million variables. . .



Issues

Ï The previous model is good, but. . .
Ï Is it acceptable in practice?
Ï For a typical instance:

Ï sky positions: > 300 → ∼ 100000 arc variables
Ï time discretization:

Ï each image: ∼ 48 seconds
Ï each movement: from a few seconds to ∼ 1 minute

Ï If we discretize to 1 second: > 4000 million variables. . .



Practical approach # 1



Practical approach # 1

For dealing with the practical problem:
Ï Motivation: as we cannot afford much detail on future data,
concentrate on the next movement

Ï Very simple idea: use a nearest-neighbor approach
Ï Well known heuristic method for the traveling salesman
problem (TSP)



Nearest-neighbor



Nearest-neighbor



Nearest-neighbor



Nearest-neighbor: improvement
Ï Consider only neighbors visited at most N +2 times, where N
is the minimum number of visits



Algorithm: nearest-neighbor

Solution contruction procedure:
Ï select (arbitrarily) a visible point
Ï repeat:

Ï move to closest "visitable" point
Ï visible and with minimum delay from previous observation

Ï advance simulation time: movement + exposure durations
Ï update set of "visitable" points
Ï determine distance from current point to all visitable

These solution constructions can be iterated:
Ï choose all different starting points
Ï for each of them, construct a solution starting from thene
Ï generates many solutions
Ï at the end, choose the best of them



Algorithm: nearest-neighbor

Solution contruction procedure:
Ï select (arbitrarily) a visible point
Ï repeat:

Ï move to closest "visitable" point
Ï visible and with minimum delay from previous observation

Ï advance simulation time: movement + exposure durations
Ï update set of "visitable" points
Ï determine distance from current point to all visitable

These solution constructions can be iterated:
Ï choose all different starting points
Ï for each of them, construct a solution starting from thene
Ï generates many solutions
Ï at the end, choose the best of them



Initial part of the solution



Full solution



Practical approach # 2



Practical approach # 2

Ï Nearest-neighbor is blind
Ï considers only the next step

Ï Can we improve it?
Ï rolling-horizon



Practical approach # 2



Rolling-horizon

Ï Consider current position of the telescope
Ï Determine the N closest observable point
Ï Schedule them optimally

Ï approximate dynamics of the movement between two celestial
positions

Ï consider present movement times
Ï use optimization model for the TSP

Ï Commit only to the next point to visit



Rolling-horizon



Analysis



Histogram for the total number of observations



Histogram for the number of 3-times observations



Histogram: # n-th observations (best solution)

nearest neighbor rolling horizon



Comparison:

Ï Rolling-horizon heuristic:
Ï makes a better usage of the time
Ï allows more observations overall

Ï Nearest-neighbor heuristic:
Ï less consistent
Ï greater variability on solutions constructed
Ï allows more 3-times observations

Ï If distance independent of observation time:
Ï nearest-neighbor constructs hundreds of solutions in just a few
seconds

Ï good for reacting in real-time



Further issues
Ï Real time data:

Ï weather conditions: clouds may obstruct observation
Ï use whole sky image analysis to select observable points



Further issues
Ï Real time data:

Ï weather conditions: clouds may obstruct observation
Ï use whole sky image analysis to select observable points



Further issues
Ï Force some observations, e.g.

Ï observe area around gravitational wave
Ï follow an asteroid



Further issues
Ï Force some observations, e.g.

Ï observe area around gravitational wave
Ï follow an asteroid



Further issues
Ï Force some observations, e.g.

Ï observe area around gravitational wave
Ï follow an asteroid



Further issues
Ï "Expected image interest":

Ï can we somehow estimate how much new information a new
image will bring about?

Ï objective: maximize "total interest" of images collected
Ï advantage for a mathematical model here



In summary

Ï First attempt to model/solve telescope scheduling
Ï Ongoing work, no definitive results yet
Ï Methods:

1. Telescope scheduling as a mathematical optimization problem
2. Heuristic methods:

Ï nearest-neighbor
Ï rolling horizon, based on a model for the traveling salesman

problem
Ï Future work:

Ï online version (image processing)
Ï extend to different objectives
Ï deal with real-time constraints
Ï exact method?
Ï reinforcement learning?


	The problem
	An optimization model
	Practical approach # 1
	Practical approach # 2
	Analysis
	In summary

