Scheduling High-Cadence Telescope Observations An optimization approach

João Pedro Pedroso

INESCTEC and Faculty of Sciences, University of Porto

Joint work with:

- Shiro Ikeda, ISM
- Tomoki Morokuma, The University of Tokyo
- Shigeyuki Sako, The University of Tokyo

Kiso Symposium, Kiso, July 2019

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The problem

Situation (my understanding):

- ► Telescope used for detecting supernovae right after explosions
 - rapid increase in observed flux, requiring multiple observations during a night
- Strategy:
 - take successive images of a given zone
 - check for differences between them
- In this context:
 - try to observe the whole visible celestial sphere
 - repeat some time later
 - there must be a minimum delay between successive images

うして ふゆう ふほう ふほう うらつ

- aim: maximize the number of observations made
- in other words, minimize the time lost
 - telescope movements
 - waiting time

Background: optimization tools

Background: optimization tools

Consider the following situation:

- 7 positions to observe in the sky
- Each position
 - has an expected reward
 - requires a certain time to be photographed

うして ふゆう ふほう ふほう うらつ

A telescope is available for a limited time

Example

 Data: Position: 1 2 3 4 5 6 7 Reward: 7 2 4 9 1 2 3 Time: 12 8 11 19 5 2 5

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Total available time: 30
- How can we solve the problem?

Example

- Data: Position: 1 2 3 4 5 6 7 Reward: 7 2 4 9 1 2 3 Time: 12 8 11 19 5 2 5
- Total available time: 30
- How can we solve the problem?
- Mathematical formulation: knapsack problem
 - Variables: x₁, x₂, x₃, x₄, x₅, x₆, x₇
 - $x_i = 1$ if we photograph position *i*, 0 otherwise
 - \blacktriangleright binary variables, constrained to values 0 or 1
 - Objective:
 - maximize $7x_1 + 2x_2 + 4x_3 + 9x_4 + x_5 + 2x_6 + 3x_7$
 - Constraint:
 - subject to $12x_1 + 8x_2 + 11x_3 + 19x_4 + 5x_5 + 2x_6 + 5x_7 \le 30$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Mathematical formulation

Knapsack problem: more concisely:

maximize
$$\sum_{j} v_j x_j$$

subject to $\sum_{j} w_j x_j \le W$
 $x_j \in \{0, 1\}$ $\forall j$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

How to solve it - with Gurobi and Python

Simply describe the problem, and send it to a general purpose solver

```
from gurobipy import *
1
    m = Model()
2
    x = {}
3
    for i in range(1,8):
4
         x[i] = m.addVar(vtype="B")
5
    m.addConstr(12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <=
6
    m.setObjective(7 \times [1] + 2 \times [2] + 4 \times [3] + 9 \times [4] + x [5] + 2 \times [6] + 3 \times [7], GRB.
7
    m.optimize()
8
    for i in range(1,8):
9
         print(x[i].X)
10
```

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

How to solve it - with Gurobi and Python

Simply describe the problem, and send it to a general purpose solver

```
from gurobipy import *
1
    m = Model()
2
    x = {}
3
    for i in range(1,8):
4
         x[i] = m.addVar(vtype="B")
5
    m.addConstr(12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <=
6
    m.setObjective(7 \times [1] + 2 \times [2] + 4 \times [3] + 9 \times [4] + x [5] + 2 \times [6] + 3 \times [7], GRB.
7
    m.optimize()
8
    for i in range(1,8):
9
         print(x[i].X)
10
```

```
Optimal solution found (tolerance 1.00e-04)
1
   Best objective 1.60000000000e+01, best bound 1.6000000000e+01, gap 0.0000%
2
   1.0
3
   0.0
4
   1.0
5
   0.0
6
   0.0
7
   1.0
8
9
   1.0
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

How to solve it - with a modeling language

Simply describe the problem in a modeling language, and send it to a general purpose solver

```
1 ampl: var x {1..7} binary;
2 ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
3 ampl: subject to Capacity:
4 12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30;
5 ampl: solve;
```

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

How to solve it - with a modeling language

Simply describe the problem in a modeling language, and send it to a general purpose solver

```
1 ampl: var x {1..7} binary;
2 ampl: maximize z: 7*x[1] + 2*x[2] + 4*x[3] + 9*x[4] + x[5] + 2*x[6] + 3*x[7];
3 ampl: subject to Capacity:
4 12*x[1] + 8*x[2] + 11*x[3] + 19*x[4] + 5*x[5] + 2*x[6] + 5*x[7] <= 30;
5 ampl: solve;
```

```
Academic license - for non-commercial use only
1
    Gurobi 8.0.1: optimal solution; objective 16
2
3
    2 simplex iterations
    1 branch-and-cut nodes
4
    ampl: display x;
5
    x [*] :=
6
    1 1
7
    2 0
8
9
    3 1
    4 0
10
    5 0
11
    6 1
12
    7 1
13
14
    ;
```

General-purpose optimization solvers:

- No need to know what methods are used for solving
- Very powerful:
 - most of the underlying optimizatin problems are NP-hard
 - in the worst case, take exponential time in terms of the size of the problem

うして ふゆう ふほう ふほう うらつ

- but in practice, even very large problems can be solved
 - often, thousands or millions of variables and/or constraints
- Convenient way to get a proven optimum
 - even open source solvers involve years of development

The problem

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣��

The problem

- There is a set of positions to be observed in the sky
- Each of them can be observed on a given configuration of the telescope
- We want to
 - minimize unproductive time
 - maximize the number of positions observed 3 times during the night

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Difficulty: sky "moves" during the night
 - setup between two telescope positions is time-dependent

Background

Background

Figure

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

An optimization model

An optimization model

maximize
$$\sum_{k \in K} z_k$$

subject to
$$\sum_{i \in I} x_{it} \le 1$$

$$x_{i,t-1} = \sum_{j \in I} w_{ijt}$$

$$y_i \in I, t = 1, ..., T$$

$$x_{jt} = \sum_{i \in I: t-c_{ij} > 0} w_{ij,t-c_{ij}}$$

$$\forall j \in I, t = 1, ..., T$$

$$y_{k0} = 0$$

$$\forall k \in K$$

$$y_{kt} \le \sum_{i \in I} a_{ikt} x_{it}$$

$$\forall k \in K, t = 1, ..., T$$

$$\min(T, t+d_k)$$

$$\sum_{t'=t} y_{kt'} \ge d_k (y_{kt} - y_{k,t-1})$$

$$\forall k \in K, t = 1, ..., T$$

$$\forall k \in K$$

(all variables are binary)

・ロト ・ 個ト ・ ヨト ・ ヨト ・ ヨ ・ のへで

Data

- $K \rightarrow$ set of positions to be observed in the sky
- $I \rightarrow$ set of positions in the telescope
- $T \rightarrow$ number or periods to consider (time discretization)
- $a_{ikt} \rightarrow$ connect telescope and sky's positions:
 - ► $a_{ikt} = 1$ if at period t telescope in position $i \in I$ observes sky's position $k \in K$

- ▶ a_{ikt} = 0 otherwise
- ► $c_{ij} \rightarrow$ time necessary to move the telescope from position *i* to *j*
- ▶ $d_k \rightarrow$ time necessary to make observation at sky's position k

Variables

- Main decision variables:
 - $x_{it} = 1$ if telescope is on position *i* at period *t*
 - x_{it} = 0 otherwise
- Telescope movement:
 - ► w_{ijt} = 1 if at period t telescope moves from position i to position j (possibly, j = i)
- Observed: (determined in terms of *x*)
 - $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Positions observed: (determined in terms of y)
 - $z_k = 1$ if sky's position k has been observed

Constraints (#1)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- $z_k = 1$ if sky's position k has been observed

At each period, telescope is (at most) in one position

$$\sum_{i \in I} x_{it} \le 1 \qquad \text{for } t = 0, \dots, T$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Constraints (#2)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- z_k = 1 if sky's position k has been observed

If the telescope was in position i at t-1, then at t it must move to some (possibly the same) position

$$x_{i,t-1} = \sum_{j \in I} w_{ijt} \qquad \forall i \in I, t = 1, \dots, T$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

• if $x_{i,t-1} = 1$, then one of the w_{ijt} must be non-zero

Constraints (#3)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- z_k = 1 if sky's position k has been observed

For being in position j at period t, the telescope must have been in a position i (possibly the same) early enough to move to j

$$x_{jt} = \sum_{i \in I: t-c_{ij} > 0} w_{ij,t-c_{ij}} \qquad \forall j \in I, t = 1, \dots, T$$

うして ふゆう ふほう ふほう うらつ

Constraints (#4)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- $z_k = 1$ if sky's position k has been observed

No observations can be made at t = 0

$$y_{k0} = 0 \qquad \qquad \forall k \in K$$

Constraints (#5)

- x_{it} = 1 if telescope is on position i at period t
- $w_{ijt} = 1$ if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- z_k = 1 if sky's position k has been observed
- ▶ $a_{ikt} \rightarrow 1$ if at period t telescope in position $i \in I$ observes sky's position $k \in K$

Observing sky's position k at period t is only possible if the telescope is in a position from which k can be observed

$$y_{kt} \le \sum_{i \in I} a_{ikt} x_{it} \qquad \forall k \in K, t = 1, \dots, T$$

うして ふゆう ふほう ふほう うらつ

Constraints (#6)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- $z_k = 1$ if sky's position k has been observed
- ▶ $d_k \rightarrow$ time necessary to make observation at sky's position k

If an observation at point k has started in period t, then the same position must be observed at least d_k successive periods

$$\sum_{t'=t}^{\min(T,t+d_k)} y_{kt'} \ge d_k (y_{kt} - y_{k,t-1}) \qquad \forall k \in K, t = 1, ..., T$$

• observing point k starts in period t iff $y_{k,t-1} = 0$ and $y_{kt} = 1$

- in that case, the right-hand side is positive
- otherwise, the constraint becomes redundant

Constraints (#7)

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- y_{kt} = 1 if sky's position k is observed at period t, 0 otherwise
- $z_k = 1$ if sky's position k has been observed

A position is counted in the objective only if it was observed at some valid period

$$z_k \le \sum_{t=1}^T y_{kt} \qquad \forall k \in K$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Objective

- x_{it} = 1 if telescope is on position i at period t
- w_{ijt} = 1 if at period t telescope moves from position i to position j
- $y_{kt} = 1$ if sky's position k is observed at period t, 0 otherwise
- z_k = 1 if sky's position k has been observed

Objective: maximize the number of positions observed:

maximize
$$\sum_{k \in K} z_k$$

Refinements: second-time observations

- What happens if all the positions can be observed?
- We should take into account second-time observations
 - also third-time, fourth-time, ...
- Additional variables:
 - ► y'_{kt} = 1 if position k is observed for the second time at some period t

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $y'_{kt} = 0$ otherwise

Refinements: second-time observations

- A minimum number of periods (Δ) must elapse since the first observation
- ▶ In other words: y'_{ks} must be zero for Δ periods after period t at which y_{kt} changed from 1 to 0
- Additional constraints $(\forall k \in K, t = 1, ..., T)$:

$$y'_{kt} \le 1 - (y_{k,t-1} - y_{kt})$$

$$y'_{k,t+1} \le 1 - (y_{k,t-1} - y_{kt})$$

...

$$y'_{k,t+\Delta} \le 1 - (y_{k,t-1} - y_{kt})$$

- A new variable z'_k is needed for counting the number of second-time observations (as with z_k)
- Extension for three-times observations: z_k''

Objective: maximize the number of three-times observations

maximize $\sum_{k \in K} z_k''$

The previous model is good, but...

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Is it acceptable in practice?

Issues

- The previous model is good, but...
- Is it acceptable in practice?
- For a typical instance:
 - ▶ sky positions: > $300 \rightarrow \sim 100000$ arc variables
 - time discretization:
 - each image: ~ 48 seconds
 - each movement: from a few seconds to ~ 1 minute

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If we discretize to 1 second: > 4000 million variables...

Practical approach # 1

<□> <@> < E> < E> E のQ@

For dealing with the practical problem:

 Motivation: as we cannot afford much detail on future data, concentrate on the next movement

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Very simple idea: use a nearest-neighbor approach
- Well known heuristic method for the traveling salesman problem (TSP)

Nearest-neighbor

Nearest-neighbor

Nearest-neighbor

Nearest-neighbor: improvement

Consider only neighbors visited at most N+2 times, where N is the minimum number of visits

Algorithm: nearest-neighbor

Solution contruction procedure:

- select (arbitrarily) a visible point
- repeat:
 - move to closest "visitable" point
 - visible and with minimum delay from previous observation

うして ふゆう ふほう ふほう うらつ

- advance simulation time: movement + exposure durations
- update set of "visitable" points
- determine distance from current point to all visitable

Algorithm: nearest-neighbor

Solution contruction procedure:

- select (arbitrarily) a visible point
- repeat:
 - move to closest "visitable" point
 - visible and with minimum delay from previous observation

うして ふゆう ふほう ふほう うらつ

- advance simulation time: movement + exposure durations
- update set of "visitable" points
- determine distance from current point to all visitable

These solution constructions can be iterated:

- choose all different starting points
- ▶ for each of them, construct a solution starting from thene
- generates many solutions
- at the end, choose the best of them

Initial part of the solution

≣▶ ≣ ⁄0.00

Full solution

996

æ

Practical approach #2

Practical approach #2

- Nearest-neighbor is blind
 - considers only the next step

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Can we improve it?
 - rolling-horizon

Practical approach # 2

Rolling-horizon

- Consider current position of the telescope
- Determine the N closest observable point
- Schedule them optimally
 - approximate dynamics of the movement between two celestial positions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- consider present movement times
- use optimization model for the TSP
- Commit only to the next point to visit

Rolling-horizon

Analysis

<□> <@> < E> < E> E のQ@

Histogram for the total number of observations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Histogram for the number of 3-times observations

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Histogram: # n-th observations (best solution)

nearest neighbor

rolling horizon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comparison:

- Rolling-horizon heuristic:
 - makes a better usage of the time
 - allows more observations overall
- Nearest-neighbor heuristic:
 - less consistent
 - greater variability on solutions constructed
 - allows more 3-times observations
- If distance independent of observation time:
 - nearest-neighbor constructs hundreds of solutions in just a few seconds

うして ふゆう ふほう ふほう うらつ

good for reacting in real-time

- Real time data:
 - weather conditions: clouds may obstruct observation
 - use whole sky image analysis to select observable points

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Real time data:
 - weather conditions: clouds may obstruct observation
 - use whole sky image analysis to select observable points

- Force some observations, e.g.
 - observe area around gravitational wave

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

follow an asteroid

- ► Force some observations, *e.g.*
 - observe area around gravitational wave
 - follow an asteroid

- ► Force some observations, *e.g.*
 - observe area around gravitational wave
 - follow an asteroid

- "Expected image interest":
 - can we somehow estimate how much new information a new image will bring about?
 - objective: maximize "total interest" of images collected
 - advantage for a mathematical model here

୬ବନ

In summary

- First attempt to model/solve telescope scheduling
- Ongoing work, no definitive results yet
- Methods:
 - 1. Telescope scheduling as a mathematical optimization problem
 - 2. Heuristic methods:
 - nearest-neighbor
 - rolling horizon, based on a model for the traveling salesman problem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Future work:
 - online version (image processing)
 - extend to different objectives
 - deal with real-time constraints
 - exact method?
 - reinforcement learning?