

木曽105cmシュミット鏡と KWFCによる 広視野多色狭帯域撮像観測

西浦 慎悟 (東京学芸大学・自然・宇宙地球科学) 宮野 彩 (東京学芸大学・教育) 根本 明宗 (東京学芸大学・教育) 長谷川 優子 (東京学芸大学・教育)

1. はじめに

1.0

0.0

 $[OIII]/H\beta$

広視野狭帯域撮像観測

銀河のHII領域に注目した星生成研究で 大きな威力を発揮する。

Henry&Howard(1995),

・例えば、2kCCDから...

赤色に見える所がHII領域 と呼ばれる星生成領域→

[OIII]/Ηβ

log10

柏木修論(2009)

電離ガスに着目したカラー画像を用いることで,天文学を中心とした原子構 造やイオンを学ぶ科目横断的な教材を作成できる。→ 例えば,2kCCDから...

図2. ばら星雲のH β +[OIII]+H α 画像(連続光は未除去)

2. KWFC用狭帯域フィルター

銀河に付随するHII領域の内部運動V_{inn},銀河の回転運動V_{rot},銀河の後退速度V_{rad} を以下の図1のように設定(Smith & Weedman 1970, ApJ, <u>161</u>, 33; 1972, ApJ, <u>172</u>, 307; Rubin et al. 1985, ApJ, <u>289</u>, 81; Sofue & Rubin 2001, ARA&A, <u>39</u>, 137; de Vaucouleur et al. 1991, RC3; Tully 1988)し,輝線はHα+[NII], Hβ, [OIII], [SII]を想定した。

図3. 近傍銀河に付随したHII領域から放射される輝線の概念図

前述したようなHII領域から放射される各輝線に対応した帯域を設定・作成した。

Hβλ4861→ N4873 フィルター[OIII]λλ4959,5007→ N5013 フィルターHαλ6563+[NII]λλ6548,6583 → N6590 フィルター[SII]λλ6716,6731→ N6750 フィルター

表1. KWFC用の各狭帯域フィルターの仕様

フィルター	中心波長 (nm)	ピーク波長 (nm)	バンド幅 (nm)	帯域 (nm)	最大 透過率 (%)	対応輝線
N4873	487.3	487.9	10.9	481.8-492.7	96.2	Ηβλ4861
N5013	501.3	501.1	16.8	492.9-509.7	91.6	[OIII]λλ4959,5007
N6590	659.9	658.5	16.3	651.8-668.1	94.0	Ηαλ6563 +[NII]λλ6548,6583
N6750	675.0	675.1	13.9	668.1-682.0	93.3	[SII]λλ6716,6731

注)本稿でいう「帯域」とは、透過率が最大値の50%以上となる波長帯を意味する。 注)F3の透過曲線は平行光に対して得られたものに、単純な波長シフトを施して得た。

表2. N4873 (Hβ)の透過曲線@F3

N 4 8 7 3						
波長 (n m)	透過率 (%)	波長 (n m)	透過率 (%)			
474	0.00	491	0.93			
476	0.01	492	0.72			
478	0.03	493	0.42			
479	0.06	494	0.21			
480	0.12	495	0.10			
481	0.27	496	0.05			
482	0.54	497	0.03			
483	0.83	499	0.01			
484	0.97	501	0.00			
485	0.99					
486	0.99					
487	1.00					
488	1.00					
489	1.00					
490	0.99					

表3. N5013([OIII])の透過曲線@F3

N 5 0 1 3						
波長	透過率	波長	透過率			
(n m)	(%)	(n m)	(%)			
483	0.00	502	1.00			
485	0.01	503	0.99			
488	0.03	504	0.99			
489	0.06	505	0.99			
491	0.18	506	0.99			
492	0.32	507	0.95			
493	0.53	508	0.83			
494	0.74	509	0.63			
495	0.91	510	0.43			
496	0.98	511	0.26			
497	0.99	512	0.16			
498	0.99	513	0.09			
499	0.99	515	0.04			
500	1.00	519	0.01			
501	1.00	522	0.00			

注)透過率は表1の「最大透過率」で規格化してある。

表4. N6590 (Hα+[NII]) の透過曲線@F3

N 6 5 9 0						
波長 (n m)	透過率 (%)	波長 (n m)	透過率 (%)			
640	0.00	661	1.00			
643	0.01	662	1.00			
646	0.03	663	1.00			
647	0.05	664	0.99			
649	0.14	665	0.95			
651	0.37	666	0.86			
652	0.54	667	0.70			
653	0.73	668	0.52			
654	0.87	670	0.22			
655	0.95	671	0.13			
656	0.99	673	0.05			
657	1.00	674	0.03			
658	1.00	678	0.01			
659	1.00	680	0.00			
660	1.00					

表5. N6750([SII])の透過曲線@F3

N 6 7 5 0						
波長	透過率	波長	透過率			
(n m)	(%)	(n m)	(%)			
657	0.00	677	1.00			
659	0.01	678	0.99			
662	0.03	679	0.99			
664	0.06	680	0.99			
666	0.18	681	0.99			
667	0.32	682	0.95			
668	0.53	683	0.83			
669	0.74	685	0.63			
670	0.91	687	0.43			
671	0.98	689	0.26			
672	0.99	691	0.16			
673	0.99	693	0.09			
674	0.99					
675	1.00					
676	1.00					

注)透過率は表1の「最大透過率」で規格化してある。

・狭帯域フィルターと木曽シュミット主鏡の反射率(黒破線)と補正板透過率(黒実線)(樽沢ほか,1996,木曽シュミット観測の新展開集録),測光標準フィルター(Bessell, 1990, PASP, 102, 1181, Doi et al. 2010, AJ, 139, 1628)。

図4. KWFC用狭帯域フィルターの透過曲線と、木曽シュミット主鏡の反射率 (黒破線),補正板透過率(黒実線),測光標準フィルターB, V, Rc, Ic, SDSSg, r, iの透過曲線。

・狭帯域フィルターとKWFC(Kiso Wide Field Camera)各CCDチップの感度の波長 特性(諸隈 2013,木曽シュミット・シンポジウム2013 集録)。

図5. KWFC用狭帯域フィルターの透過曲線と、KWFCの各CCDチップの感度の波長特性。 赤実線は chip#0, 赤点線は chip#1, 赤破線は chip#2, 赤一点破線は chip#3, 青実線は chip#4, 青点線は chip#5, 青破線は chip#6, 青一点破線は chip#7。

狭帯域フィルターの帯域中において、光学系の反射率・透過率や CCD感度などの急激な変動は見られない。

→(結果)安心して標準的な画像解析が行える。

4. 各CCDチップ上下の応答性の差異

(目的)峰崎氏が指摘した,KWFC各チップの上下間に生じる線形性の差異(諸隈 2013,木曽シュミット・シンポジウム2013集録)の確認とこれに対応した画像解析 方法を考察する。

(観測) 2014/03/26から2018/01/31の間の5晩で,複数のフィルター(*B, V, R*c, SDSS-*i*, N4873, N5013, N6590, N6750)によるドーム・フラット画像を,様々な露光時間で取得した。

(解析) KWFC各chipを上(upper)部と下(lower)部に分け、それぞれからオーバー・ スキャン領域(OSRs)によるレベル補正を施したバイアス画像を差し引いた。そし て、各CCDチップについてupper部とlower部の応答の平均値 I_{upp} , I_{ow} を測定し、 I_{ow} に対する I_{upp} / I_{ow} をプロットすることで、照度に対するその線形性と画像解析方法 の妥当性の確認を行った。

・MIT製チップ#0-#3の照度に対する応答性

図7. MIT製チップの照度 I_{ow} に対する応答性の比 I_{upp} / I_{ow} 。右) B, V, N4873, N5013, 左) Rc, SDSS-i, N6590, N6750。

(結果1) I_{ow} に対する I_{upp} / I_{ow} の応答は, 5000-10000 ADU までに急激に立ち上がり, その後, 非常に緩やかな増加傾向を経て, ほぼ一定となる。この一定値は, チップやフィルターとは無関係に約2.5-2.7%である。

SITe製チップ#4-#7の照度に対する応答性

図8. SITe製チップの照度 f_{ow} に対する応答性の比 f_{upp} / f_{ow}。右) *B*, *V*, N4873, N5013, 左) *R*c, SDSS-*i*, N6590, N6750。

(結果2) KWFCの広い照度範囲(500-35,000 ADU)で, I_{upp} / I_{low} のばらつき度合い
は、チップやフィルターに関係なく、0.1%以内である。
→ 最初に上下2分割してリダクションを行い、背景光除去後に再合成がベター。

5. 等級較正の精度

(目的)分光測光標準星は1視野に1つ程度しか無い。そこで,簡単な仮定の下に,観 測視野内の複数の恒星の測光データを内挿することで,狭帯域フィルターによる等級 の予想値を算出し,これを観測値と比較することで等級較正を行う。この等級較正方法 の精度を概算する。

(観測) 2014/03/27, 2014/11/19, 2017/05/05, 2018/01/26に, 分光測光標準星PG 0934+554, BD+28°4211を各狭帯域フィルターを用いて, chip#0-#7 で撮像観測した。

(カタログ・データ) SDSS-R12から, これら分光測光標準星領域の恒星 のPSF測光値を収集し,それを単純 に線形補間したものをその恒星の SEDと見做す。そして,各狭帯域フ ィルターと同じ半値幅を持つ矩形の 感度特性を仮定し,これを透過する 恒星のフラックスを算出する(図9 参照)。

(データ解析)「1つの分光測光標準星から求めた」等級のゼロ点ZERO(SP)と、「約10個の周辺の恒星のSDSSの測光値を用いて求めた」等級のゼロ点ZERO(PT)の差、

 Δ ZERO = ZERO(SP) — ZERO(PT) をチップ毎に求める。

なお、ZERO(PT) 導出に伴うランダム 誤差は、0.06-0.07等であった。

衣O. 守秋のでロ点の左ムZERO	表6.	等級の	ゼロ点の差	∆ ZERO
-------------------	-----	-----	-------	---------------

chip	N4873	N5013	N6590	N6750
#0	-0.115	-0.007	-0.026	-0.058
#1	-0.142	-0.057	-0.029	-0.070
#2	-0.131	-0.020	-0.041	-0.058
#3	-0.102	+0.012	-0.025	-0.097
#4	-0.159	+0.019	-0.032	-0.082
#5	-0.155	-0.020	+0.003	-0.082
#6	-0.120	-0.006	-0.044	-0.019
#7	-0.145	-0.036	-0.039	-0.060

 (結果3) 一見, ZERO(PT)が大きい傾向があるが, ZERO(PT)のランダム誤差を 考慮すると, N5013, N6590, N6750 の∆ZEROはほぼゼロと見做して, つまり, ZERO(SP)とZERO(PT)の値はほぼ同じと考えて良い。ただし, N4873では, この誤 差範囲を超えて, ZERO(PT)が大きくなる傾向があるようだ(原因は不明)。
→ N5013, N6590, N6750 については, 本稿の方法による等級較正方法が有効と 考えられる。N4873画像については, 今後, さらなる分析を考えたい(2kCCDでも 同じか?他の分光測光標準星でも同じか?,など)。 6. 限界輝度の測定

(目的・観測)限界輝度を測定するため,2013/05/14(N6590,計32分),2014/03/27 (N5013, 計60分), 2018/01/26 (N6750, 計約20分), 2018/01/27 (N4873, 計70分) に 近傍渦巻銀河M101領域の狭帯域撮像観測を行った。

(分析) 限界輝度を反映する量として, IRAF/imstat で各CCDチップの背景ゆらぎの 1σに相当する輝度を測定した。結果は表7にまとめた。

	chip	N4873	N5013	N6590	N6750
	#0	24.71 ± 0.08	25.70 ± 0.01	24.96 ± 0.06	23.66 ± 0.07
	#1	24.66 ± 0.03	25.72 ± 0.06	25.04 ± 0.05	23.72 ± 0.04
	#2	24.67 ± 0.08	25.45 ± 0.02	24.91 ± 0.06	23.56 ± 0.04
	#3	24.59 ± 0.02	25.41 ± 0.06	24.86 ± 0.02	23.59 ± 0.02
	#4	24.34 ± 0.01	24.99 ± 0.02	24.39 ± 0.05	23.06 ± 0.02
	#5	24.32 ± 0.01	25.02 ± 0.05	24.53 ± 0.05	23.26 ± 0.06
図10. M101領域のN4873画像。	#6	24.64 ± 0.16	25.05 ± 0.02	24.31 ± 0.02	23.19 ± 0.03
視野は2度×2度, 上が北。	#7	24.31 ± 0.01	25.00 ± 0.01	23.99 ± 0.03	23.15 ± 0.02

表7 各独帯域撮像の限界輝度(mag/口")

本研究は学術振興会による科学研究費補助金(2465046, 16K12750:代表者 西浦慎悟)の支援を受けました、心から感謝申し上げます。

