Evaluation of large pixel CMOS image sensors for the Tomo-e Gozen wide field camera

Yuto Kojima*, S. Sako, R. Ohsawa, H. Takahashi, M. Doi, N. Kobayashi, T. Aoki, N. Arima, K. Arimatsu, M. Ichiki, S. Ikeda, K. Inooka, Y. Ita, T. Kasuga, M. Kokubo, M. Konishi, H. Maehara, N. Matsunaga, K. Mitsuda, T. Miyata, Y. Mori, M. Morii, T. Morokuma, K. Motohara, Y. Nakada, S. Okumura, Y. Sarugaku, M. Sato, T. Shigeyama, T. Soyano, M. Tanaka, K. Tarusawa, N. Tominaga, T. Totani, S. Urakawa, F. Usui, J. Watanabe, T. Yamashita, and M. Yoshikawa *Institute of Astronomy, Graduate School of Science, the University of Tokyo (<u>y.kojima@ioa.s.u-tokyo.ac.jp</u>)

TOMO-E GOZEN (Tomo-e) is a wide field optical camera equipped with 84 CMOS sensors for the Kiso 1.05 m f/3.1 Schmidt telescope operated by the University of Tokyo. Tomo-e is capable of taking optical images of **20 square degrees** consecutively in **2 fps**. A camera unit equipped with the 21 CMOS sensors have been completely developed in February, 2018 (Figure 1). In this poster, evaluations of the CMOS sensors and sensitivity estimation of Tomo-e are reported.

Evaluation of CMOS Sensors

Results of the sensor evaluation are summarized in Table 1.

 The dark current of 0.5 e⁻/sec/pix at 290 K is much lower than a typical sky background flux, 50 e⁻/sec/pix, in a dark night. The readout noise of 2.0 e⁻ implies that dominant noise in 2 fps observations is a sky background noise (\sim 5.0 e⁻).

Product

Pixels

Pixel size

Architecture

Peak efficiency

Saturation [e-]

Readout noise [e-]

Sensitive wavelength

Conversion gain [e-/ADU]

Well depth (linearity < 5 %) [e-]

Dark current (at 290 K) [e-/sec/pix]

Distribution of the dark current

Figure 2. Canon 35MMFHDXM

Table 1. Summary of characteristics of the CMOS sensor.

35 mm CMOS sensor

Canon 35MMFHDXM (see Figure 2)	1
2160x1200 (photosensitive + reference pixels)	Photoelectric conversion efficiency
19 µm	
front-illuminated CMOS with micro lens array + cover glass, internal column amplifiers	b b c
roughly 350 to 900 nm (see Figure 3)	
~ 0.68 at 500 nm (see Figure 3)	
0.23, 0.94, 2.4 (high-, middle-, low-gain*)	
6.0x10 ³ , 2.5x10 ⁴ , 5.3x10 ⁴ (high-, middle-, low-gain*)	
6.3x10 ³ , 2.7x10 ⁴ , 5.7x10 ⁴ (high-, middle-, low-gain*)	
2.0 , 4.1, 9.2 (high-, middle-, low-gain*)	
0.5 (see Figure 4)	
$1.0x10^{-3}$ 2.0x10 ⁻⁴ (>2.5.5.0 e ⁻ /sec/pix)	

Bias Subtraction (Figure 5)

ubtraction with a bias frame created by the reference ixels (Ohsawa et al, 2016) leaves a résidual pattern, hich brings a noise floor of 0.9 e⁻. This self bias btraction works until stacking dozens of frames.

Figure 5. Noise reduction by stacking dark frames subtracted the self bias frame.

0.6

Dark current [e-/sec/pix]

Figure 4. Distribution of the

0.2

0.8

1.0

1.2

On-Sky Sensitivity

Sensitivities of Tomo-e installed on the prime focus of the Kiso Schmidt telescope are reported.

Sensitivity to a point source (Figure 6)

18.7 mag with 0.5 sec exposure in high-gain mode

Assumptions

CMOS: efficiency = 0.68, bandwidth = 200 nmCCD: efficiency = 0.90, bandwidth = 200 nm

Sensitivity to a fast moving object (Figure 7)

More sensitive than Pan-STARRS for moving objects faster than 10 arcsec/sec.

Figure 6. Limiting magnitudes to a point source with CMOS in each gain modes and CCD. Saturation magnitudes are also represented.

Figure 7. Limiting magnitudes to a fast moving object with Tomo-e Gozen and wide field instruments.

References

[1] Sako et al., "The Tomo-e Gozen wide field CMOS camera for the Kiso Schmidt telescope", Proc. SPIE, in press (2018). [2] Ohsawa et al., "Development of a real-time data processing system for a prototype of the Tomo-e Gozen wide field CMOS camera", Proc. SPIE, 9913, 991339 (2016).

1.0x10⁻³, 2.0x10⁻⁴ (>2.5, 5.0 e⁻/sec/pix)

(see Figure 4)

high-, middle-, and low-gain modes correspond to the

internal amplifier gain of 16×1 , 4×1 , and 1.3×1.3 , respectively.