

KONAN UNIVERSITY

5th Jul 2016 木曽シュミットシンポジウム

Outline

- 甲南大実習
- High-cadence supernova survey
- ・おまけ
 - All-sky bright metal-poor star survey

High-cadence supernova survey

High-cadence SN survey

High-cadence SN survey

- Experience of KISS (Morokuma-san's talk)
 - 180sec with KWFC is too deep for follow-up observation
 - Many unidentified supernova candidates
- A wide and shallow survey is essential to discover nearby transients.
- Example of a survey strategy
 - Area: 3000deg²
 - Limiting magnitude

18mag (3sec exposure, 30min cadence)20mag (180sec exposure, 1day cadence)

Timescale of transients

Shock breakout

Massive Star (>10M_•) e⁻-capture SNe (8-10M_•) Core collapse Shock formation

At the shock emergence, a stored energy is released as radiation.

Spectra are quasi-blackbody $T \sim R^{-3/4}E^{1/4}$

<u>Typical properties</u> timescale: 1sec ~ 1day peak wavelength: X-ray ~ UV

Shock breakouts of Type IIP SN

Shock breakout detection with Kepler

No shock breakout of Kepler SN

 t_{rise} : 10.5 +- 0.4days E=2x10⁵¹ergs R=280+-20R.

However,

no filter observation no follow-up observation no spectroscopy

Realtime transient finding Prompt follow-up obs.

Rapidly rising transients with HSC

>9% of CCSNe could have rapid rise.

Tanaka, NT, + 2016

High-cadence surveys open up a new frontier

Flash spectroscopy

Early bump in SLSN

High-cadence SN survey

- Example of survey strategy
 - Area: 3000deg²
 - Limiting magnitude

18mag (3sec exposure, 30min cadence)

 \rightarrow 10 shock breakouts (50 early SNe)

20mag (100sec exposure, 1day cadence)

 \rightarrow 60 nearby superluminous supernovae

- Realtime transient finding
- Prompt follow-up observations

KISS system

KISS collaboration for follow-up obs.

- Japan/Taiwan team
 - Kanata(1.5m)/HOWPol, MITSuME(0.5m), Lulin(1m)
- Rochester Institute of Technology (KPNO 0.9-m)
 - Michael W. Richmond
- Indian Institute of Astrophysics (HCT)
 - Devendra Sahu
- Carnegie Supernova Project (CSP; NOT)
 - Eric Hsiao, Maximilian Stritzinger, Mark Phillips, Nidia Contreras, Francesco Taddia Morrell, Carlos Contreras
- Telescopio Nazionale Galileo (TNG/DOLORES; 3.5m)
 - Paolo Mazzali, Emma Walker, Elena Pian
- SNFactory (UH88/SNIFT)
 - Greg Aldering
- Sternberg Astronomical Institute (Crimea, Moscow)
 - Dmitry Tsvetkov, Nikolay Pavlyuk

New telescopes for follow-up obs.

Okayama 3.8m new technology optical infrared telescope

おまけ All-sky bright metal-poor star survey

Metal-poor stars

Past surveys

g₀

Past surveys

Bright metal-poor stars remain

THE ASTROPHYSICAL JOURNAL, 698:L37–L41, 2009 June 10

doi:10.1088/0004-637X/698/1/L37

© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

BD+44°493: A <u>NINTH MAGNITUDE</u> MESSENGER FROM THE EARLY UNIVERSE; CARBON ENHANCED AND BERYLLIUM POOR*

HIROKO ITO^{1,2}, WAKO AOKI^{1,2}, SATOSHI HONDA³, AND TIMOTHY C. BEERS⁴

THE ASTROPHYSICAL JOURNAL, 773:33 (17pp), 2013 August 10 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/773/1/33

CHEMICAL ANALYSIS OF THE NINTH MAGNITUDE CARBON-ENHANCED METAL-POOR STAR BD+44°493*

HIROKO ITO^{1,2}, WAKO AOKI^{1,2}, TIMOTHY C. BEERS^{3,4}, NOZOMU TOMINAGA^{5,6}, SATOSHI HONDA⁷, AND DANIELA CAROLLO^{8,9}

- 9th magnitude star with [Fe/H] = -3.8 (BD+44°493)
- Upper limit on A(Be), depleted Li abundance
- The origin of BD+44°493 is a faint SN.

LAMOST survey since 2011

- V>12mag
- ~ 800 fibers/deg²

- Targets are randomly selected.
- R~1000 (365-900nm)

Skymapper survey since 2014

• All 20000 sq. degrees south of equator

	u	v	g	r	i	Z
1 EPOCH	19.5	19.5	21.0	21.0	20.0	19.0
SATURATION	10.0	10.5	13.0	13.0	11.0	10.5
EXP. TIME (s)	100	100	100	100	100	100
FINAL DEPTH	20.5	20.5	21.7	21.7	20.7	19.7

Filter system of skymapper

Metallicity vs. color

Howes+14

Metal-poor star with the lowest [Fe/H]

Record holders of low [Fe/H]

All-sky bright metal-poor star survey

- Filter: Strömgren v (390nm, [Fe/H]), Strömgren G (430nm, [C/Fe]) with PS1 3π broad-band data
- Limiting magnitude and survey width: (no filter, 1night) 18mag 20000deg²
 - → (g/i, 1night) 16mag? 20000deg²
 (v/G, 1night) 14mag? 20000deg²
 Differences of band widths are taken into account.
- Area: 20000-30000deg²
- More realistic estimate is needed.

Summary

- 甲南大実習
 - 今年度もよろしくおねがいします。
- High-cadence supernova survey
 - Filter: no filter / g and r on CMOS chips
 - Limiting magnitude: 18mag (3sec), 20mag (100sec)
 - Area: 3000deg²
 - Cadence: 30min 1 day
 - Realtime transient finding (w/ machine learning)
 - Prompt follow-up observation
- All-sky bright metal-poor star survey
 - Filter: Strömgren v, G
 - Limiting magnitude: 14mag? (v, G)
 - Area: 20000-30000deg²
 - Cadence: no requirement