Tomo-eによる重力波天体の探査観測

田中雅臣 (国立天文台)

Masaomi Tanaka (National Astronomical Observatory of Japan) Importance of EM observations
EM emission from GW sources
Prospects for Tomo-e Gozen

Dawn of GW astronomy

GW150914 BH-BH merger (~30 Msun) @ 400 Mpc

NEXT!

NS-NS merger (~< 200 Mpc) or BH-NS merger (~< 800 Mpc)

N ~30 (0.3-300) events/ 1 yr

LIGO Scientific Collaboration and Virgo Collaboration, 2016, PRL, 061102

The 2nd is also a BH-BH merger

GW151226 BH-BH merger (~14+8 Msun) @ 440 Mpc

LIGO Scientific Collaboration and Virgo Collaboration, 2016, PRL, 241103

Localization ~ 600 deg²!! (~ 10 deg² with Advanced Virgo and KAGRA)

Detection of electromagnetic (EM) counterparts is essential

Redshift (distance)Host galaxyLocal environment

http://www.ligo.org/detections.php

Degeneracy between inclination and distance

Local environments

(GW 150914, Abbott et al. arXiv:1602.03840)

(short GRBs, Berger 2014)

Importance of EM observations
 EM emission from GW sources
 Prospects for Tomo-e Gozen

Electromagnetic signature from NS mergers

Mass ejection

M(Au) ~ 30 M_{Earth} **r-process nucleosynthesis** (~10³³ JPY)

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

~ solar abundance

Hotokezaka+13, PRD, 87, 4001 Rosswog+13, MNRAS, 430, 2580 Wanajo et al. 2014, ApJ, 789, L39 Just et al. 2015, MNRAS, 448, 541

NS merger as a possible origin of r-process elements

Event rate

R_{NSM} ~ 100 event/Myr/Galaxy = 10⁻⁴ event/yr/Galaxy NS-NS merger rate Within 200 Mpc ~ 30 GW events/yr (~0.3-300)

Ejection per event EM

M_{ej}(r-process) ~ 10⁻² Msun

M(Galaxy, r-process) ~ M_{ej}(r) x (R_{NSM} x t_G) ~ 10⁻² x 10⁻⁴ x 10¹⁰ ~ 10⁴ Msun

"kilonova": Radioactively-powered emission

Fast time evolution
Faint (absolute -14 mag)
Red (T ~ 3000K)

MT & Hotokezaka 2013, ApJ, 775, 113 MT+, 2014, ApJ, 780, 31 MT 2016 (review), Advances in Astronomy (arXiv:1605.07235)

Extremely red spectra

MT16

Possible brighter/bluer/faster emission

* too bright models conflict with observations of short GRBs (Kann+10) ==> Mopt >~ -16 mag

Disk wind (~10⁻² Msun?)

t < 5d, blue,

22 mag@200 Mpc (abs -15 mag)

* may be absorbed by dynamical ejecta

Free neutron (~10⁻⁴ Msun??)

t < 1d, blue, 22 mag@200 Mpc (abs -15 mag) * large uncertainty in mass

Metzger & Fernandez 2014; Kasen+15

Metzger+2015

Importance of EM observations
 EM emission from GW sources
 Prospects for Tomo-e Gozen

Follow-up observations for GW150914 and GW151226

• GW150914

- Smartt et al. (PS1, arXiv:1602.04156)
- Kasliwal et al. (iPTF, arXiv:1602.08764)
- Soares-Santos et al. (DECam, arXiv:1602.04198) 22 mag, 40 deg²
- Morokuma et al. (J-GEM, arXiv:1605.03216)

18 mag, 24 deg²

20 mag, 442 deg², 56 SNe

21 mag, 135 deg², 8 SNe

• GW151226

- Smartt et al. (PS1, arXiv:1606.04795)
 21 mag, 290 deg², 20 SNe
- Cowperthwaite et al. (DECam, arXiv:1606.04538) 22 mag, 29 deg², 4 SNe
- Copperwheat et al. (LT, arXiv:1606.04574) spectroscopy

see Morokuma-san's talk for Kiso/KWFC surveys

Kasliwal & Nissanke 2014

GW alert error boxSubaru/HSCZTFe.g. 6 deg x 6 deg1.5 deg

Tomo-e Gozen 9 deg

KWFC 2 deg

2015: LIGO O1 2016-2017: LIGO O2 + Virgo

2018: LIGO, Virgo and KAGRA

Supernovae vs GW source

Selection by (1) short timescale <= lower mass (2) faintness <= lower energy source (3) red colors <= higher opacity

Strategy for Tomo-e survey (~100 deg²)

- 1 visit = 3 min x 5 exposures (~20 min)
- 5 pointing (~2 hr)
- 2-3 visits /night

- no filter <= faint, models are uncertain</p>

i - z

MT16

Summary

	2015	2016	2017	2018
Localization	~600 deg ²	~100 deg ²		~10-50 deg ²
Max. dist	80 Mpc	~150 Mpc	in die state of the second second Name was also also also also also also also al	200 Mpc
kilonova brightness	~ 19-20 mag	~ 20-21 mag		~22-23 mag
Expected number	? (~0.1)	? x 10 (~1)		? x 100 (~10)
		(+Virgo?)	+Virgo	+KAGRA?

iPTF (7 deg²) PS1 (7 deg²) DECam (3 deg²)

Tomo-e (20 deg²) ZTF (47 deg²)