Kiso Supernova Survey (KISS)

諸隈 智貴 (東京大学), 冨永 望 (甲南大学), 田中 雅臣 (国立天文台), KISS project member

超新星 = 星の最期の大爆発

SN 2011fe (Ia, Nugent+2011)

できる限り早期の発見を

Schawinski+2008 Tominaga+2009

KISSプロジェクトの目的

shock breakout = 超新星の爆発の"ほぼ瞬間"をとらえる

木曽シュミットシンポジウム2015 2015/07/13,14

KISSプロジェクトの目的

shock breakout = 超新星の爆発の"ほぼ瞬間"をとらえる

Searches for Shock Breakouts

Kiso/KWFC

Subaru/Hyper Suprime-Cam

KWFC観測(KISS)でshock breakoutの物理を検証・確立

最遠方の重力崩壊型超新星の観測手段

冨永くん's talk

木曽シュミットシンポジウム2015 2015/07/13,14

KISS Survey Strategy (TM+2014)

□ 木曽シュミット望遠鏡 + KWFC (4 deg²)

 $2012/0^{\circ}$

40 60 80 100

- g-band (4700 A)
 3-minute exposure (20-21 mag)
 1時間 cadence
- 50-100 deg² / night
 ~100 nights / year
 2012/4 2015/3 (==> 2015/9)

KISS SN Summary

	2012	2013	2014	2015	計
CBET SN (KISS)	3	5	13	1	22
ATel SN (KISS)	0	0	0	2+1	2+1
dwarf nova (KISS)	0	0	1	0	1
SN by other groups	9	12	5	6	32
AGN	0	1	2	0	3
unknown transient w/ spec.	0	8	3	0	11
unknown transient w/o spec.	6	11	22	7	46
total	18	37	46	17	118

redshift vs discovery magnitude/phase (updated)

CBET / ATel name	tel	inst
SN 2012cm	Kanata	HOWPol
SN 2012cq	TNG	DOLORES
SN 2012ct	TNG	DOLORES
SN 2013I	NOT	ALFOSC
SN 2013J	NOT	ALFOSC
SN 2013Y	NOT	ALFOSC
SN 2013al	TNG	DOLORES
SN 2013ba	NOT	ALFOSC
SN 2014Q	TNG	DOLORES
SN 2014S	TNG	DOLORES
SN 2014T	TNG	DOLORES
SN 2014U	Magellan	FIRE
SN 2014an	OAO	KOOLS
SN 2014bd	du Pont	WFCCD
SN 2014bk	NOT	ALFOSC
SN 2014bo	OAO	KOOLS
SN 2014cf	Magellan	IMACS
SN 2014dh	NOT	ALFOSC
dwarf nova in Gemini	Kanata	HOWPol
SN 2014dy	OAO	KOOLS
SN 2014ec	Nayuta	LISS
SN 2014ed	Nayuta	LISS
SN 2015E	Kanata, Nayuta	HOWPol, LISS
KISS15m	NOT	ALFOSC
KISS15n	Liverpool, NOT, Magellan	SPRAT, ALFOSC, IMACS
KISS15q	Nayuta	LISS

SN Follow-Up Observations (CBET, ATel)

25 SNe 1 dwarf nova

KISS(7) domestic(3) TNG(6) NOT(8) その他海外(4)

KISS highlights

Survey Strategy (TM+2014, PASJ) published peculiar RL-NLS1, KISS14k (Tanaka+2014, ApJL) published

Publ. Astron. Soc. Japan (2014) 66 (6), 114 (1–16) doi: 10.1053/posi/pou105 Advance Access Publication Date: 2014 December 4

Kiso Supernova Survey (KISS): Survey strategy

Tomoki Morokuma,^{1,*} Nozomu Tominaga,^{2,3} Masaomi Tanaka,⁴ Kensho Mori,⁵ Emiko Matsumoto,² Yuki Kikuchi,¹ Takumi Shibata,² Shigeyuki SAKO,¹ Tsutomu Aoki,⁶ Mamoru Doi,^{1,7} Naoto Kobayashi,¹ Hiroyuki MAEHARA,⁶ Noriyuki MATSUNAGA,⁸ Hiroyuki MITO,⁶ Takashi Miyata,¹ Yoshikazu Nakada,¹ Takao Soyano,⁶ Ken'ichi Tarusawa,⁶ Satoshi Miyazaki,⁴ Fumiaki Nakata,⁹ Norio Okada,⁴ Yuki Sarugaku,¹⁰ Michael W. RICHMOND,¹¹ Hiroshi AKITAYA,¹² Greg ALDERING,¹³ Ko ARIMATSU,^{8,10} Carlos Contreras,^{14,15} Takashi Horiuchi,¹⁶ Eric Y. Hsiao, 14, 15 Ryosuke Iton, 5 Ikuru Iwata, 9 Koji S. Kawabata, 12 Nobuyuki Kawai,¹⁷ Yutaro Kitagawa,¹ Mitsuru Kokuso,¹ Daisuke Kuroda,¹⁸ Paolo MAZZALI, 19, 20, 21 Toru MISAWA, 22 Yuki MORITANI, 12 Nidia MORRELL, 14 Rina Okamoto,¹⁶ Nikolay Pavlyuk,²³ Mark M. Phillips,¹⁴ Elena Pian,^{24,25} Devendra SAHU, 26 Yoshihiko SAITO, 17 Kei SANO, 8, 10 Maximilian D. STRITZINGER,¹⁵ Yutaro Tachibana,¹⁷ Francesco Taddia,²⁷ Katsutoshi Takaki,⁵ Ken Tateuchi,¹ Akihiko Tomita,²⁸ Dmitry Tsvetkov,²³ Takahiro UI,⁵ Nobuharu UKITA,¹⁸ Yuji URATA,²⁹ Emma S. WALKER.³⁰ and Taketoshi Yoshii¹⁷

¹Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan

³Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan

³Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

⁴National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
⁵Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

⁶Kiso Observatory, Institute of Astronomy, Graduate School of Science, The University of Tokyo 10762-30, Mitake, Kiso-machi, Kiso-gun, Nagano 397-0101, Japan

⁷Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-003, Japan

THE ASTROPHYSICAL JOURNAL LETTERS, 7933.26 (6pp), 2014 October 1 © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/2041-8205/793/2/L26

DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

MASAOMI TANAKA¹, TOMOKI MOROKUMA², RYOSUKE ITOH³, HIROSHI AKITAYA⁴, NOZOMU TOMINAGA^{5,4}, YOSHIBIIKO SAITO⁷, ŁUKASZ STAWARZ^{8,9}, YASUYUKI T. TANAKA⁴, POSIŁAK GANDHI¹⁰, GAMAL ALI¹¹, TSUTOMU AOKI¹², CARLOS CONTRERAS¹³, MAMORU DOI², AHMAD ESSAM¹¹, GAMAL HAMED¹¹, ERIC Y. HSIAO¹³, IKURU IWATA¹⁴, KOJI S. KAWABATA⁴, NOBUYUKI KAWAI⁷, YUKI KIKUCHI², NAOTO KOBAYASHI², DAISUKE KURODA¹⁵, HIROYUKI MAEHARA¹¹, EMIKO MATSUMOTO⁵, PAOLO A. MAZZALI^{16,17,18}, TAKEO MINEZAKI², HIROYUKI MITO¹¹, TAKASHI MIYATA², SATOSHI MIYAZAKI¹, KENSHO MORI³, YUKI MORITANI⁴, KANA MOROKUMA-MATSUI¹⁹, NIDIA MORRELL¹³, TOHRU NAGAO²⁰, YOSHIKAZU NAKADA², FUMIAKI NAKATA¹⁴, CHINAMI NOMA²¹, KEN OHSUGA¹, NORIO OKADA¹, MARK M. PHILLIPS¹³, ELENA PIAN^{22,23}, MICHAEL W. RICHMOND²⁴, DEVENDRA SAHU²⁵, SHIGEYUKI SAKO², YUKI SARUGAKU⁴, TAKUMI SHIBATA⁵, TAKAO SOYANO¹¹, MAXIMILIAN D. STRITZINGER²⁶, YUTARO TACHIRANA⁷, FRANCESCO TADEKA²⁷, KATSUTOSHI TAKAKI³, ALI TAKEY¹¹, KEN'ICHI TARUSAWA¹², TAKAHIRO UK³, NOBUHARU UKITA¹⁵, YUJI URATA²⁸, EMMA S. WALKER²⁹,

AND TAKETOSHI YOSHII⁷

¹ National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan, m ² Institute of Astronomy, School of Science, University of Tokyo, Mitaka, Tokyo 181-0015, Japan ³ Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan ⁴ Hiroshima Asirophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan ⁵ Department of Physics, Faculty of Science and Engineering, Konan University, Kohe, Hyogo 658-8501, Japan ⁶ Kavil Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Department of Physics, Tokyo Institute of Technology, Megaro-ku, Tokyo 152-8551, Japan Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan ⁹ Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-544 Krakow, Poland ¹⁰ Department of Physics, Darham University, Durham DH1-3LE, UK ¹¹ National Research Institute of Astronomy and Geophysics, Helwan, Cairo, Egypt 12 Kiso Observatory, Institute of Astronomy, School of Science, The University of Tokyo, Kiso, Nagano 397-0101, Japan Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601, Chile 14 Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720, USA ¹⁵ Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232, Japan Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Browslow Hill, Liverpool 1.3 5RF, UK Istituto Nazionale di Astrofisica-OAPd, vicolo dell'Osservatorio 5, 1-35122 Padova, Italy ¹⁸ Max Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Germany ¹⁰ Nobeyama Radio Observatory, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan 20 Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho, Maisuyama 790-8577, Japan 21 Astronomical Institute, Toboku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan 22 Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy 23 INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via P. Gobetti 101, 1-40129 Bologna, Italy ²⁴ Department of Physics, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA ²⁵ Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India ²⁶ Department of Physics and Astronomy, Aarhus University, Ny Muskegade, DK-8000 Aarhus C, Denmark 27 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 28 Institute of Astronomy, National Central University, Chang-Li 32054, Taiwan 29 Department of Physics, Yale University, New Haves, CT 06520-8120, USA Received 2014 July 9: accepted 2014 September 1: published 2014 September 11

ABSTRACT

We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey. The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z = 0.840, however, with unusually strong narrow emission lines. The estimated black hole mass of $\sim 10^7 M_{\odot}$ implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-

- Survey Strategy (TM+2014, PASJ) published
- peculiar RL-NLS1, KISS14k (Tanaka+2014, ApJL) published
- □ KISS14k OISTER 1-month observations (TM+2015a) in prep.
- □ Type Ibn SN, KISS14z/SN 2014bk (TM+2015b) in prep.
- □ KISS14k EVN+VERA observations (Gabanyi+?)
- □ Early detections of Type Ia SNe (Jiang+2015) in prep.
- □ short time-scale transient rate (Tanaka+?)
- □ [SN shock breakout ?]

KISS14k: radio-loud narrow-line Seyfert 1

Tanaka+2014

KISS14k: radio-loud narrow-line Seyfert 1

Tanaka+2014

KISS14k: OISTER 1-month (2014/10-11) Monitoring

 z=0.84 radio-loud narrow-line Seyfert 1 (Tanaka+2014)
 2 components ==> jet w/ 2 different electron energy distribution or jet+accretion disk Morokuma+2015, in prep.

KISS14z: Ibn型超新星@z=0.0697

□ Ib + "n": 濃いCSM

□これまでの報告例: ~10天体

ロ最大光度前の発見は2例目?

Early detections of Type Ia SNe (Jiang+, in prep.)

木曽シュミットシンポジウム2015 2015/07/13,14

Kiso observatory

KISS pipeline

standard reduction

image subtraction

source detection < 10 min ~ 50GB/day

KISS database

source info

Tokyo

cut-out images

KISS database

KISS interface

facebook Realtime check Amateur astronomers@amywhere ©Masaomi Tanaka

Ref

cut-out images

Sub

New

Japanese Amateur Astronomers' Help

ロ~20人のアマチュアの方々の参加

ロ大量の偽物の変動天体から本物(1000個に1個)を選び出す

ロ~20人のアマチュアの方々の参加

- ロ大量の偽物の変動天体から本物(1000個に1個)を選び出す
- □ 27天体のCBET/ATel報告中、17の報告に貢献
 - ロ共著者として報告文章に名前を記載

	สร้างสารีกล่างสีรัสสิราชาวิจารีสารประวัติ 	anne i stanne de oanne i stanne de oante dide anterista e de anne de anne de oanne de oanterista e de oanterist	Sign on			
	SAO/NASA ADS Astronomy Abstract Service					
	· Find Similar Abstra	acts (with default settings below)				
	Electronic On-line Article (HTML)					
	Also-Read Articles (Reads History)					
	· · <u>Translate This Page</u>					
Ĩ	Title:	Supernova 2014cf				
	Authors:	Morokuma, T.; Tominaga, E. Matsumoto; N.; Tanaka, M.; Mameta, K.; Fukuda, S.; Tomita, K.; Morrell, N.; Phillips, M.; Hsiao, E. Y.				
	Publication:	Central Bureau Electronic Telegrams, 3944, 1 (2014). Edited by Green, D. W. E.				
	Publication Date:	08/2014				
	Origin:	CBAT				
	Objects:	2014cf				
	Bibliographic Code:	2014CBET.39441M				
	Abstract					
13	CRFT 3944 available at Central Bureau for Astronomical Telegrams					

KISSプロジェクト+αの今後

- ロ 2015年9月の観測(9/11-22)をもって一旦終了とします
- □ これまでの3年間のデータの整理、論文化へ(年内メド)
- □重力波天文学がいよいよ始まります
 - □ 重力波検出のアラートを受けてToO追観測
 - ロその他突発現象(MAXI衛星からのアラート)のToO追観測
- □ Tomo-e Gozen (4 deg² ==> 20 deg²)の時代(2017年?)に?

- □ 重力波検出器
 - ロ advanced LIGO (米国に2台), LIGO-India (2022年?)
 - advanced Virgo (イタリア)
 - □ KAGRA (日本/神岡)
- □ 200 Mpc以内の中性子星合体からの重力波検出が可能に □ 検出数: 年間1-10天体のオーダー
- □ 重力波到来方向の不定性: ~100 deg²
 - ロ広視野カメラでのフォローアップ観測が不可欠

Tomo-e Gozen時代の超新星サーベイ

- □より高い効率での広視野観測 □ 広視野化: 4 deg² ==> 20 deg² □短い読み出し時間: ~0 sec ロ サーベイ戦略(~18 mag) □ 全天 x [1時間 cadence] □ 3000 deg² x [15分 cadence] ロ大量 & 多様な超新星の早期発見 ~10 shock breakouts / 2 years □ ~60 superluminous supernovae / 2 years very nearby supernovae ロフォローアップ観測@日本&東アジア
 - □広島かなた(1.5m), 西はりま(2m), 京都(3.8m)

Tomo-e Gozen時代の超新星サーベイ

- □より高い効率での広視野観測 □ 広視野化: 4 deg² ==> 20 deg² □短い読み出し時間: ~0 sec ロ サーベイ戦略(~18 mag) □ 全天 x [1時間 cadence] □ 3000 deg² x [15分 cadence] ロ大量 & 多様な超新星の早期発見 ~10 shock breakouts / 2 years □ ~60 superluminous supernovae / 2 years very nearby supernovae ロフォローアップ観測@日本&東アジア
 - □広島かなた(1.5m), 西はりま(2m), 京都(3.8m)

KISS Summary

□ 2012/04より開始、2015/09で一旦終了 ==> これまでのデータの吟味
 □ 1時間cadenceでの超高頻度超新星探査

□ 見かけ等級 g~20 mag, 距離 d~<200Mpc

口~1 shock breakout/3年

□ KISSでより詳細な物理的理解、すばる/HSCで遠方星形成史etc.

ロ これまで27 SNe/dwarf novaの同定+報告

ロデータ即時解析、国内外follow-up collaboration体制の整備

□ by-product: 珍しいタイプの超新星(Ibn型), Ia型超新星早期検出,

AGN(radio-loud NLS1) ロ 重力波電磁波対応天体同定へ向けた準備

□ Tomo-e Gozenでの全天超新星サーベイ

2 papers & more in prep.
 Morokuma+2014: survey paper

Tanaka+2014: peculiar narrow-line Seyfert 1

木曽シュミットシンポジウム2015 2015/07/13,14