クェーサーの光度変動が アウトフローガスに与える影響

信州大学 D2 堀内貴史

1/18

目次

- ・導入・研究の目的
- 観測
- 結果
- 電離状態変動シナリオの考察
- 展望・まとめ

アウトフローガスの物理的な重要性 3 / 18

- 降着円盤より放出される、アウトフローは
- 1) 降着円盤より角運動量を排除し、新たなガスの降着を促進する
 →クェーサーの成長に不可欠な要素(Murray et al. 1995; Proga et al. 2000).
- 2) 多量のエネルギー、金属を母銀河に放出 ⇒ 星形成の抑制、宇宙の 化学進化に重要な役割を果たす(Di Matteo et al. 2005; Moll et al. 2 007; Dunn et al. 2012).

アウトフローガスの噴出に は降着円盤の輻射圧による 影響が大きい(Murray et al. 1995, Proga et al. 2000). その他、磁気力(Everett 2005)や磁気力+輻射圧など.

クェーサー吸収線

4/18

クェーサーを背景光源として用いることにより、視線上に存在する物質(ガス)を吸収線として捉えることが出来る.

電離状態変動シナリオと研究目的 6/18

浅くなる

or 深くなる

• 目的

mini-BAL, NALを持つ複数の クェーサーに対するアウトフ ローの電離状態変動シナリオ (Variable Ionization State scenario: VIS scenario)の検証

・シナリオの概要

クェーサーの<mark>光度変動</mark>がアウ トフローガスの電離状態に変 化を与えるというシナリオ

mini-BALクェーサーのみ特別大きなな光度変動傾向 が確認されてもVISシナリオを支持する可能性あり!

アウトフロー 由来の吸収線

VISシナリオを支持する先行研究の例

クェーサーAPM
 08279+5255の0.3 mag 程の光度変動と、BALの等価幅の変動がリンクしていることが確認された(Trevese et al. 2013).

7/18

⇒VISシナリオを支持する 可能性の高い結果!!

本研究は複数のmini-BAL, NAL quasarでVISシナリオを 検証!! 目次

- ・導入・研究の目的
- 結果
- 考察
- 展望・まとめ

VISシナリオの検証方法

mini-BAL, NALクェーサーの光度と吸収線の変動が同期するかを 確かめる. 2 $\leq z \leq 3$ のクェーサー計9つ(Super Eddington: < ϵ >=3) に対する測光・分光同時モニター観測を実施する.

- ・測光モニター観測:木曽,105cmシュミット望遠鏡/KWFC
- ・分光モニター観測:岡山, 188cm望遠鏡/ KOOLS

木曽105cmシュミット望遠 鏡(使用filter: SDSS u,g and i)

188cm望遠鏡

木曽・岡山での過去の観測達成状況

10/18

観測時期	木曽での達成度 (%)	岡山での達成度 (%)
2012/ 11	80	
2012 / 12		60
2013/ 1	40	
2013/ 2	50	
2013/3	90	
2013/5	80	
2013/9	100	50
2013/ 12	25	30
2014/3	0	0
2014/6	50	80
2014/9	40	0
2014/ 12	0	0
2015/ 2	70	50
2015/5	100	40
2015/9		

目次

- ・導入・研究の目的
- 観測
- 考察
- 展望・まとめ

Structure Function(SFs)解析

12 / 18

 SFs: 光度変動の大きさ g-band u-band の平均値を各期間でプ ロットしたもの. 0.1 mini-BAL, NAL QSO OSFs に対しモデルフィット (ベキ,漸近関数). 黒丸: mini-BAL QSO 白丸: NAL QSO $S_p(\Delta \tau) = \left(\frac{\Delta \tau}{\Delta \tau_n}\right)^{\gamma} \stackrel{\checkmark}{=} \overset{\checkmark}{=} \overset{}{=} \overset{}{$ u, g, i-band i-band **Full Samples** $S_a(\Delta \tau) = V_a (1 - e^{-\Delta \tau / \Delta \tau_a})^{\text{form}}$ 渐行国数 01 0.1 漸近関数 • 短波長側の変動の方が 大きい(明るくなると青 くなる) 100 100 Rest Frame Time Lag (days) Rest Frame Time Lag (days)

Structure Function(SFs)解析

- 各期間における光度変 動の大きさ| *Δ m*| も Over Plotした.
- mini-BAL, NAL QSOの
 | Δ m | の最大値 (u-band)

mini-BAL QSO : 0.23 mag (HS1603+3820)

NAL QSO : 0.30 mag (Q1700+6416)

13/18

14 / 18

mini-BAL QSO HS1603の光度曲線と吸収線の等価幅の動向

• HS1603+3820のmini-BAL :

クェーサーの光度が減少すると等 価幅が大きくなる傾向が見える (CV→CIVへの再結合!?).

KOOLSのデータにおいて、最大1.4σ (84%)の変動傾向を確認.

VISシナリオを直ちに支持すること は出来ないが、再結合によって等 価幅が増加した可能性がある.

目次

- ・導入・研究の目的
- 観測
- 結果
- ・考察
 ・展望・まとめ

SFsのモデルフィット結果の考察

 先行研究(Vanden Berk et al. 2004; Wilhite et al. 2008)に比べ、光度変 動振幅に関するパラ メータ*S*(100day), *V*aは 小さい.

光度-光度変動の反相関 関係を反映した結果

 mini-BAL, NAL QSO両者 のパラメータに有意な 差はない.

見込むアウトフローの 構造の違いで光度変動 傾向に差異は生じない.

		S_p		S_a			
Quasars	Authors	γ	$S(\Delta \tau = 100 d)$ (mag)	Δau_a (Asymptotic) (day)	V_a (mag)		
SDSS u-band							
mini-BAL quasars	this work	$0.785 {\pm} 0.109$	$0.129 {\pm} 0.037$	a	a		
NAL quasars	this work	a	a	$12.28 {\pm} 10.09$	$0.139 {\pm} 0.026$		
All of our quasars	this work	$0.410 {\pm} 0.115$	$0.135 {\pm} 0.076$	$49.35 {\pm} 15.20$	$0.169 {\pm} 0.019$		
SDSS 7886 quasars	W08	0.435	$0.173 {\pm} 0.001$	—	_		
mini-BAL quasars	this work	$0.426 {\pm} 0.078$	0.078 ± 0.036	31.70 ± 4.79	0.090 ± 0.016		
NAL quasars	this work	$0.210 {\pm} 0.071$	0.078 ± 0.067	$13.53 {\pm} 6.981$	$0.076 {\pm} 0.008$		
All of our quasars	this work	$0.264{\pm}0.056$	$0.080 {\pm} 0.043$	20.77 ± 7.480	$0.082 {\pm} 0.008$		
SDSS 25,710 sample	VB04	$0.293 {\pm} 0.030$	-	51.9 ± 6.0	$0.168 {\pm} 0.005$		
SDSS 7886 quasars	W08	0.479	$0.147 {\pm} 0.001$	—	_		
mini-BAL quasars	this work	a	a	$18.87 {\pm} 9.088$	0.073 ± 0.008		
NAL quasars	this work	$0.432 {\pm} 0.111$	a	a	$0.054{\pm}0.046$		
All of our quasars	this work	$0.432 {\pm} 0.121$	a	a	a		
SDSS 25,710 sample	VB04	$0.303 {\pm} 0.035$	-	$62.6 {\pm} 8.3$	$0.139 {\pm} 0.005$		
SDSS 7886 quasars	W08	0.436	0.108 ± 0.001	—	_		

VISシナリオはどの程度の光度変動が必要か?

・ 電離状態の変動に必要な光 度変動の程度を見積もる.

右図 (Hamann 1997)から、光電 離でVISシナリオをサポートする には、CIII→CIV電離パラメータ の変化△log U~-0.8程度が必要.

・ 光度変動に換算

 $\Delta m = -2.5 \Delta \log U = 2.0$

912^Å以下(水素の電離光子の波 長)で2.0magの変動は我々の クェーサーでは再現出来なかっ た.

- 3年以上に渡る測光(KWFC)・分光(KOOLS)モニター観測の結果以下のことが分かった.
- 光度変動の最大値はNALクェーサーQ1700+6416の0.3 mag程度で あり、VISシナリオを支持するほどの大きな光度変動(~1.5 mag) はmini-BAL/NALクェーサーの両者で観測されなかった(KWFC).
- 2. Structure Function解析の結果、mini-BAL/NALクェーサーの両者の 光度変動傾向に決定的な違いは確認出来なかった(KWFC).
- 3. 吸収線のS/Nは十分でないが、HS1603+3820に光度と吸収線の時 間変動傾向の同期(らしきもの)が確認された(KOOLS).
- 上記の結果は、VISシナリオの補助機構の存在を示唆する結果である.補助機構の一つは、X線で観測される(降着円盤内縁に存在する)Warm Absorberの変動が下流のアウトフローの電離状態に変化を与えるというものである.アーカイブデータでWarm Absorber とアウトフローの変動を探る計画である.

電離状態変動シナリオの補助機構の考察

- X線分光観測で観測されるWarm Absorber(e.g. Krongold et al. 2007)の光学的厚さが変動することで、連続光が調節され、下流に存在するアウトフローガスの電離状態に影響を与えている可能性がある!
- Warm absorber の変動の期間はおおよそ1週間程度(Gofford et al. 2014)

初回観測時からの等級の変動分布

光度曲線と吸収線の変動傾向

Carbonの各電離度での存在比

なぜmini-BALは時間変動を示すのか?

先行研究 ~mini-BAL,NALの変動~

5/

クェーサーの静止系におけるCIV mini-BAL(左)とNAL(右)をもつ計12天体の等価幅 のモニター観測結果(Misawa et al. 2014). mini-BALをもつサンプルにのみ明らか な変動が確認されている.

SFの波長依存性 (our quasar)

200Åにおける光度変動の 程度を推定.
Fitting Model (Vanden Berk et al. 2004)

$$S_1(\lambda) = A\exp(-\lambda/\lambda_0) + B$$

• $S_1(912\text{\AA}) = 0.17 \text{mag}$ (†) $\Rightarrow < |\Delta m| > ~ 0.13 \text{mag}$

SFの波長依存性 (our quasar)

- 200Åにおける光度変動の程度を推定.
 Fitting Model (Vanden)
- Fitting Model (Vanden Berk et al. 2004)

$$S_1(\lambda) = A\exp(-\lambda/\lambda_0) + B$$

• $S_1(912\text{Å}) = 0.17 \text{mag}$ (青) • ⇒ <| Δm |> ~ 0.13 mag

912Åより短波長側では さらに大きな変動が見込 まれる.