Supernova Survey with KWFC

KWFCによる 超新星サーベイ

Masaomi Tanaka 田中 雅臣

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

(IPMU, U Tokyo)

NOAO/AURA/NSF Bob Ferguson and Richard Desruisseau/Adam Block

Contents

- What is Supernova?
- Supernova Survey
 - Past and on-going surveys in the world
- Supernova Survey with KWFC
 - Science cases (see also Morokuma-san's talk)
- Summary

Type la supernova (Thermonuclear SN)

Standard candle

Progenitor system

Nucleosynthesis (Fe, Si)

Core-collapse supernovae

Explosion mechanism

Progenitor star

Nucleosynthesis (C, O, Ne, Mg)

Survey with ~ 21 mag depth Type Ia SNe @ z~ 0.2 (μ~40, d~ 1 Gpc) Core-collapse SNe @ z ~ 0.05 (μ~37, d~200 Mpc)

Supernova Survey

Survey	Diameter (m)	FOV (deg ²)	Depth (R mag)	Area/day (deg ²)
LOSS	0.76	0.01	19	1000 galaxy
ROTSE-III	0.45	3.42	18.5	450
PTF	1.26	7.8	21	1000
Pan-STARRS	I.8	7	21.5	6000
SDSS-II	2.5	I.5	22.6	150
SNLS	3.6		24.3	2
GOODS	2.5 (HST)	0.003	26	0.04
HSC	8.2	I.75	26.5	I.75
KWFC	80.1	4		

(partly taken from Rau et al. 2009, PASP, 121, 1334)

Survey area (deg²)

SN Survey with KWFC KISS: KIso Supernova Survey

- Survey in blue band
 (B or g, possibly + U or u)
- 3-day cadence
 - I5 min exp. (B/g~22 mag) => ~300 deg²
 - I.5 min exp. (B/g~21 mag) => ~2700 deg²
- I-day cadence
 - I5 min exp. (B/g~22 mag) => ~100 deg²
 - I.5 min exp. (B/g~21 mag) => ~900 deg²

Unsolved Problem - Type la SNe -

V.S.

WD GSFC/D. Berry 加藤拓也さん講演 (2010年シュミットシンポ)

Hayden+10 (SDSS), see also Bianco+11 (SNLS)

Unsolved Problem - Core-Collapse SNe -

Progenitor star of extremely nearby SNe

Radius??

 $L_c = 3.3 \times 10^{42} E_{51}^{0.91} M_0^{-0.74} R_{12} (F_1/1.35)^{-0.17} t_d^{-0.34} \text{ ergs s}^{-1}$

Chevalier & Fransson 08

Expected Number of SN Detection

I-month survey (I-day cadence, B-band)

Number in () = Number of discovery at < 5 days after the explosion

	Exp. time (min)	Limiting mag (B/g)	Survey area (deg²)	# of SN Ia	# of SN IIP	# of SN lbc
Deep	15	22	100	IIO (IO)	6 (0.18)	2 (0.04)
Wide	I.5	21	900	300 (18)	15 (0.45)	5 (0.025)

Example of Type Ibc SNe

KANATA (Opt. spec)

> Pirika (Opt. spec)

MITSuME (Opt. phot)

miniTAO (NIR phot)

Subaru

(Any)

IRSF

(NIR phot)

KISS: KIso Supernova Survey

• High cadence!!

- Competition in the "time" domain
- Catch the very moment of SN explosion
 - Radius of the massive stars at the very final stage of the evolution
 - Progenitor of Type la SNe

• Expected Results with KISS (# in I month)

<u>Deep</u>: (=> Morokuma-san's talk)
 * Core-collapse SNe ~ 10 (~0.2 very early detection, 0.04 SNe lbc)
 * Type Ia SNe ~ 100 (~10 very early detection)

(!!strongly affected by the bad weather!!)

• <u>Wide</u>:

* Core-collapse SNe ~ 20 (~0.5 very early detection, 0.025 SNe lbc)
* Type Ia SNe ~300 (~20 very early detection)