

猿楽祐樹 (JAXA)
石黒正晃 (ソウル大)
臼井文彦 (JAXA)
上野宗孝 (JAXA)
花山秀和 (国立天文台)

P/2010A2(Jewitt+ 2010)

小天体上で起きたイベント(彗星活動、衝突)の痕跡
 彗星核の性質との関係

http://remanzacco.blogspot.com/2010/11/comet-103phartley-by-epoxi.html

10P/Tempel 2

- 自転軸
 - ・軌道面に対して36° (Sekanina 1991)
- 自転周期
 - 8.941 ± 0.002 hr, spin-down by 32 s per period (Knight et al., 2011) e.g., typical change = 0.01-10 hr per orbit (Gutierrez+ 2003)
- □ 活動領域
 - ・3カ所の主な活動領域(ベント)
 - ・日が当たるのは近日点付近のみ
 (Sekanina 1991)
- IRASによるダストトレイルの検出
 - · Campins et al., 1990
 - Sykes & Walker, 1992

観測 w/Spitzer (Reach et al. 2007)

- 観測日:2004年7月8日
- 望遠鏡: Spitzer Space Telescope
- カメラ:MIPS
- 観測波長:24µm

リモート観測による10P/Tempelのダストトレイルの検出(遊佐徹氏) http://www.geocities.jp/otawara2010/file/CSS2010_Yusa.pdfより

2010 July 20.428UT 120sec x 6 fiames 25cm f/3.4 reflector + CCD (ST-10XME) (Mayhill, NM, USA (remote), T. Yusa (H06)

2010年7月14日(遊佐徹氏観測)

2010年7月18日(津村光則氏観測)

観測@木曽

- 観測日:2010年10月2-7日
- □ 望遠鏡:木曽観測所105cmシュミット望遠鏡
- カメラ:2kCCDカメラ
- 観測波長:Rcバンド
- □ 軌道に沿って、±10°の位置も観測

コマ-テイルのシミュレーション

- ダスト放出方向
 - ·太陽方向
 - ・固定(近日点基準):
 太陽離角(θ)45°、彗星軌道面に
 対して(φ)0,90,180,270の4方向
 - Sekaninaのジェット方向(region 2)

- 放出パラメータ
 - ・放出率: P∝ド (I: 日射強度)
 - 放出速度: v = v₀ (I/q²)^β β^{0.5} (q:近日点距離、β:輻射圧/重力)
 v₀ = 0.25, 0.50 1.00 km/s
 - ・コーン角度:w=10,30,60°
- ダスト放出開始=前回の遠日点

■ ダストサイズ: β = 10⁻³, 10⁻², 10⁻¹

放出方向:θ=45°,Φ=0°

放出方向:θ=45°,Φ=90°

 $w = 60^{\circ}$

00

放出方向:θ=45°,Φ=180°

放出方向:θ=45°,Φ=270°

放出方向: Jet (region 2)

トレイルのシミュレーション

- コマのシミュレーションでは、
 - ・太陽方向、固定(θ =45°, φ =0°)、Jet方向の3つが観測画像と近かった
 - ・coneは、30°が一番近い

- 上記の3つの放出方向について、トレイルのシミュレーション
 - ・放出率: *P∝* / (*I*:日射強度)
 - ・放出速度: v = v₀ (I/q²)^β β^{0.5} (q:近日点距離、β:輻射圧/重力)
 v₀ = 0.25, 0.50 1.00 km/s
 - ・コーン角度: w=10,30,60°
- ダスト放出開始=前々回の遠日点
- ダストサイズ: β = 10⁻⁵, 10⁻⁴, 10⁻³

Oct. 2, 2010 (@木曽)

July 8, 2004 (w/Spitzer)

ここまでのまとめ

- Sekaninaのモデルで、観測を非常によく再現できる!!!
- □ 今回のパラメータの中では、コーン角30°がベスト
- □ 少なくとも、β <10⁻⁴のダストを放出しないとトレイルが 形成されない

Future Work

- 画像の一致度を定量的に評価する
- □ 秋までに論文にまとめる

自転軸 (Sekanina 1991)

活動領域 (Sekanina 1991)

TABLE 14. Summary of information on the discrete dust emission regions on the nucleus of P/Tempel 2 on 22-30 June 1988.

Quantity	Region I	Region II	Region III
Time of maximum amount of dust observed in coma, t_{max} (UT)	June 22.255	June 30.608	June 30.701
Time of corresponding peak production rate of dust (local noon), t_{peak} (UT) ^a	June 22.210	June 30.556	June 30.649
Time of preceding primary minimum on nucleus light curve (UT)	June 22.106	June 30.292	June 30.292
Cometocentric longitude of Earth, L_{\oplus}^{b}	6°.6	5°.0	5°.0
Cometocentric longitude of Sun, L_{\odot}^{b}	15°.5	18°.4	18°.4
Body-frame cometocentric longitude of active region's center, $\Lambda^{c,d}$	264°	146°	11°
Body-frame cometocentric latitude of active region's center, B ^{c,e,f}	+41°	+29°	+19°
Radius of triaxial ellipsoid at location of active region, δ	4.1 km	$5.2 \mathrm{km}$	6.6 km
Estimated average contribution to total dust production ^g	38 percent	50 percent	12 percent
Estimated potential emission area of active region ^{h}	5.4 km^2	7.2 km^2	1.7 km^2
Estimated potential emission area as fraction of nucleus surface area ^h	1.4 percent	1.9 percent	0.5 percent
Estimated diameter of active region at floor (active surface) ⁱ	2.6 km	3.0 km	1.5 km
Estimated diameter of active region at nucleus surface	3.3 km	3.8 km	1.9 km
Estimated depth of active region	$2.1 \mathrm{~km}$	2.4 km	1.2 km

活動領域での日射変化

近日点通過日: July 23, 2010 Feb 14, 2005

ネックライン構造

(Kimura & Liu 1977, Fulle & Sedmak 1988)

