

東大アタカマ天文台 miniTAO/ANIRで見る近傍LIRGs

東京大学天文学教育研究センター M1 舘内 謙

LIRGsとは

 $L_{ir} < 10^{11} L_{\odot}$ $10^{11} L_{\odot} < L_{ir} < 10^{12} L_{\odot}$ $10^{12} L_{\odot} < L_{ir} < 10^{13} L_{\odot}$ $10^{13} L_{\odot} < L_{ir}$

Normal Galaxys

Luminous Infrared Galaxys : LIRGs

Ultra Luminous Infrared Galaxys : ULIRGs

Hyper Luminous Infrared Galaxys : HyLIRGs

① LIRGsやULIRGsは爆発的な星生成を行っている
 →LIRGsを探ることで銀河スケールでの星形成活動を調べる!

② 過去(遠方)ではLIRGsが多数ある
 →LIRGsの性質を知ることは、銀河進化を考える上で非常に重要!

近傍のLIRGsの性質を調べることで 銀河の星形成活動や遠方銀河の進化を探る!

→進化を探る手段の一つとして LIRGsの星生成の性質を正確に評価できればよい

星形成率

銀河全体の星形成・進化に一番影響を与えるOB型星の存在を感知する!

- ・OB型星の存在量が銀河全体の金属量を主に決定
- ・OB型星は単寿命なのでその爆発頻度が重要

OB型星をうまくトレースできれば銀河進化の議論をより正確に行える

銀河の星形成領域をトレースするイメージ

Paa輝線-1875.1nm-

利点

 Haに比べて強度がそれなりに強い →PaaはHaの1/10くらい、Brγは1/100くらい

② ダストによる減光の影響が比較的少ない! →Av~3くらいでHaと強度が逆転する

③ [NII]輝線による汚染がなくなる

欠点

Paa(1875.1nm)は地上では観測が難しい
→大気の窓から外れてしまうので衛星に頼
るしかない!?

5600mに行けば大気の窓が開き地上からでも観測可能となる

チリ・チャナントール山山頂(標高5600m)にある東大アタカマ天文台miniTAO 近赤外線カメラANIR/Atacama Near Infrared cameraで観測

2009/6/11~12、2009/10/14~27 (2009年利川修論)

観測天体の選定

Sanders et al.(2003)のIRASカタログから天体を選定 →IRASのデータからまとめられた629個の赤外線で明るい銀河のカタログ

観測結果①

天体名	R.A. (J2000)			D.E. (J200)			CZ (km/s)	D _L (Mpc)	LogLir (L _e)
NGC0023	0	9	55.1	25	55	37	4536	65.6	11.05
NGC0232	0	42	46.5	-23	33	31	6047	87.7	11.3
ESO244-G012	1	18	8.6	-44	27	40	6866	99.8	11.39
UGC02238	2	46	17	13	5	45	6436	93.5	11.26
IRASF02437+2122	2	46	38.3	21	35	6	6987	101.6	11.11
NGC1614	4	34	0.1	-8	34	46	4746	68.6	11.6
MCG-05-12-006	4	52	6.8	-32	59	24	5622	81.5	11.12
ESO557-G002	6	31	46.3	-17	37	15	6339	92	11.19
IRASF06592-6313	6	59	40.3	-63	17	53	6882	100	11.17
NGC2342	7	9	19.6	20	38	12	5276	76.4	11.25
IC4687/6	18	13	38.6	-57	43	36	5188	75.1	11.55
IRASF18293-3413	18	32	40.2	-34	11	26	5449	78.9	11.81
ESO339-G011	19	57	37.5	-37	56	10	5722	82.9	11.12
NGC6926	20	33	4.8	-2	1	39	5970	86.6	11.26
ESO286-G035	21	4	11.2	-43	35	34	5208	75.4	11.13
ESO343-IG013	21	36	10.8	-38	32	38	5714	82.8	11.07
NGC7130	21	48	19.6	-34	57	5	4824	69.8	11.35
NGC7469	23	3	15.5	8	52	25	4922	71.2	11.59
MCG-01-60-022	23	42	2.2	-3	36	48	6966	101.3	11.21
NGC7771	23	51	24.7	20	6	39	4336	62.6	11.34

Sanders et al.(2003)のIRASカタログから天体を選定

2010年 利川修論より

解析結果

	Paaのフラックス密度 [erg/s/cm ²]	Pagの光度 [erg/s]	Paa-corrの光 度 [erg/s]	PaaのSFR [M』/yr]	Av Veilleux(1995)	Paɑの減光 A _{Paɑ}	銀河のタイプ	
NGC0023	9.59E-14	4.94E+40	6.92E+40	3.35	2.29	0.37	HII	
NGC0232	4.58E-14	4.21E+40	7.67E+40	2.86	4.06	0.65	LINER	
ESO244-G012	3.53E-13	4.21E+41		28.56				减光補正
UGC02238 IRASF02437+212	2E-13	2.09E+41	5.85E+41	14.20	6.98	1.12	LINER	
2	8.9E-14	1.10E+41	2.91E+41	7.46	6.60	1.06	LINER	Veilleux1995Ha/Hß
NGC1614	6.17E-13	3.47E+41	5.46E+41	23.59	3.07	0.49	HII	サーベイデータ
MCG-05-12-006	1.83E-13	1.45E+41		9.88				+
ESO557-G002	5.73E-14	5.80E+40		3.94				Dicko & Lobofala
IRASF06592-6313	4.62E-14	5.53E+40		3.75				RIEKE&LEDOISKY
NGC2342	2.578E-13	1.80E+41		12.23				1985
IC4687/6	4.76E-13	3.21E+41	4.44E+41	21.81	2.20	0.35	HII	Extinction Law
IRASF18293-3413	6.48E-13	4.83E+41	1.08E+42	32.77	5.46	0.87	HII	
ESO339-G011	9.57E-14	7.87E+40		5.34				$A_{pac}/A_{c}=0.16$
NGC6926	1.41E-13	1.27E+41	2.66E+41	8.59	5.05	0.81	Sy2	R = 3.1
ESO286-G035	1.8E-13	1.22E+41		8.31				N _V -3.1
ESO343-IG013	7.06E-14	5.79E+40	7.51E+40	3.93	1.77	0.28	LINER	
NGC7130	1.97E-14	1.15E+40	1.85E+40	0.78	3.22	0.52	LINER	
NGC7469	2.66E-13	1.61E+41	1.62E+41	10.96	0.03	0.00	Sy1	
MCG-01-60-022	1.34E-13	1.65E+41		11.17				
NGC7771	1.37E-13	6.42E+40	1.62E+41	4.36	6.29	1.01	HII	

 $SFR(Pa_{\alpha})[M_{\odot/yr}] = 6.79 \times 10^{-41} L(Pa_{\alpha})[erg/s]$ Alonso-herrero et al. 2006 より

12/20天体について補正を行えた!

PagとHgの関係性

Ha_{corr}とPaa_{corr}はよい相関にあることがわかる!

Paaと遠赤外線の関係①

● Howell et al. (2010) IRAS+GALEXの全赤外線光度

● Sanders et al.(2003) IRASの全赤外線光度

● AKARI-FISカタログ 全赤外線光度

赤外線光度のSFRはPagやHgより高めに出る傾向がある

赤外線全光度はSFRを過大評価している可能性がある

低SFRの赤外線光度ほどPaoとの相関から外れる傾向にある いったいこの寄与はどこから来ているのか? →低温シラスの影響?(Carol et al. (1987)で低光度銀河で示唆されている)

まとめと今後の観測

現在、最大のライバルであるHST/NICMOSはHaとPaaからAvを見積もっている →もっと厳密に減光補正ができればPaaの信頼性が増す!

Paβ-offのフィルターが欲しい・・・

4000

5000

6000

cz (km/s)

7000

8000

9000

③ cz~8000 km/s 近くの観測 →HSTでは撮れない領域をANIRで撮る!