輝線撮像観測による近傍渦状 銀河のHII領域の研究

柏木雄太、西浦慎悟、三澤瑠花、土橋一仁(東京学芸大学) 富田晃彦(和歌山大学) 濤崎智佳(上越教育大学)

1. 目的

近傍渦巻銀河のHII領域の輝線情報から 電離ガスの物理的性質を調べる

昨年度はM81とM101について報告した

2. 観測装置

1)木曽105cmシュミット望遠鏡
 2)2k-CCDカメラ
 3)複数の広帯域・狭帯域フィルター

広視野 多色撮像

3. 観測天体

IC342

- •距離 3.9Mpc
- ハッブル分類 SABcd
- 後退速度 31km/s

IC342 B+V+Ha三色合成画像

NGC6946

- •距離 5.5Mpc
- ・ ハッブル分類 SABcd
- 後退速度 48km/s

NGC6946 B+V+Hα三色合成画像

4. 観測

	IC342		NGC6946	
	積分時間 (sec)	限界輝度 (mag/□")	積分時間 ^(sec)	限界輝度 (mag/□")
В	1500	27.408	1500	27.160
V	1500	26.700	1500	26.148
N487 Hβ	3600	24.532	3600	25.402
N499 [OIII]	3600	25.545	3600	25.656
N519	3600	25.432	3600	25.818
Ha6417	2250	25.105	2700	25.414
Ha6577 Hα	2250	25.041	2700	25.395
Ha6737 [SII]	2250	24.998	2700	25.239

5. 解析·測光

- 解析・測光には以下のソフト用いて、典型的な方法で画像解析を行った
 - 画像解析

IRAF(米国国立光学天文台が開発) SPIRAL(銀河の画像解析用ツール)

• 測光

Source Extractor(天体の検出・測光ツール) ※測光の検出条件 { S/N > 1.5 最小画素数 9 pixels

IC342 Hα輝線画像

4輝線全てで検出されたHII領域 ⇒ 84個

NGC6946 B+V+Hα画像

NGC6946 Hα輝線画像

4輝線全てで検出されたHII領域 ⇒ 44個

6. 輝線比と光電離モデル

• 観測で得られた輝線比と光電離モデルを比較

光電離モデル(Cloudy)

- 励起星の温度 (30,000K、40,000K、50,000K)
- 電離パラメータ(ionization parameter) (10⁻³、10⁻²)
- 電離ガスの水素密度 (10²、10³、10⁴)
- 電離ガス中の金属量 (0.1Z<sub>

 (0.5Z<sub>

 、1Z<sub>

 </sub></sub></sub>

6. 輝線比と光電離モデル(IC342)

光電離モデルとの比較

⇒HII領域の分布は励起星の温度とionizing parameterの違いで説明可能

6. 輝線比と光電離モデル(IC342)

• 光電離モデルとの比較

⇒金属量・・・右上の分布は十分に説明できない

6. 輝線比と光電離モデル(IC342)

• 光電離モデルとの比較

⇒水素数密度・・・右上の分布は十分に説明できない

6. 輝線比と光電離モデル(まとめ)

HII領域の輝線比について

- ・励起星の温度
- ionization parameter
- •金属量
- •水素密度

影響が小さい?

6. 輝線比と光電離モデル(4銀河)

7. 銀河中心距離と[OIII] /Hβ輝線比

8. まとめ

4銀河のHII領域について

〇物理的性質

・励起星の温度

•ionization parameter

・金属量
 ・水素密度

O銀河中心距離と[OIII] /Hβ輝線比

- IC342・・・・・正の相関あり
- ・NGC6946・・・相関なし(但しサンプル数少ない)

·M101·····正の相関あり

・M81・・・・・・相関なし ⇒バルジが大きいため?

重要?