frame work of the East Asia GRB Follow-up Observation Network **GRB ToO Observations in the**

Yuji Urara 浦田裕次(Saitama-U) Lijin Huang 黃麗錦(ASIAA, NCU) and the EAFON team

6 (+1)telescopes in EA
1(+1) telescope in USA
1 unique instrument in Japan

WIDGET ulin(1m) <u> Xiso(1m)</u> ROUSSE-IN SSO 2006~ SNU Maidanuk 1.5m Beijing 2, 1, 0.8 m Beijing 2004 ∼ _OAO(1m) 2006~ PanSTARRs CFHT 2005~

WIDGET 2004∼ Ultra Wide FOV. 40 x 40 degree High Time resolution Automatic Operations (Tamagawa et al.)

Kiso $2001 \sim$

Lulin 2003~

$\overline{\mathbf{O}}$
G
$\tilde{\mathbf{N}}$
V
ſ
\mathbf{n}
Ω
U
• —
50
V
2
$\overline{\mathbf{n}}$
4
Ο
<u> </u>
2
\rightarrow
+
7
N

(3) Supernovae associated with long-duration GRBs (2) Detection of afterglows in 1997 : GRB 970228 (1) GRBs are cosmological

GRB	Related SN	Redshift (z)
$\mathrm{GRB}980425$	SN 1998 bw	0.0085
$\mathrm{GRB}030329$	SN2003dh	0.165
${ m GRB}031203$	SN 2003 lw	0.105
$\mathrm{GRB}060218$	$\mathrm{SN}2006\mathrm{aj}$	0.033

			5 C
RB	T_{90} (s)	redshift (z)	host galaxy
$^{ m RB050709}_{ m CO}$	0.5	0.16	Star-forming galaxy
${ m RB050724}$	ŝ	0.257	Elliptical galaxy
3RB 051221A	1.4	0.546	Star-forming galaxy

I

I

(5) Discovery of the canonical behavior of X-ray afterglows (4) Optical afterglows of short/hard GRBs

GRB Afterglows

- First afterglow was discovered in 1997 \rightarrow GRB 970228
 - Power-law evolution
- Synchrotron emission
 - Detection rate :
- X-ray afterglows > 90% Optical/IR afterglows ~ 50% Radio afterglows ~ 20%
- Breaks are frequently seem in temporal evolution.
- Before the Swift era, afterglow light curves are wel described by several power-law components
- Recently, the swift events show complicated evolution (e.g. flares, shallow decay)

The mechanism of emission is still a puzzle!!

 $F_{X}(\alpha.3-10 \text{ keV}) (erg cm^{-2} s^{-1})$

East-Asia GRB follow-up Observation Network (EAFON) (EAFON)

Advantages in East-Asia A blank in the East Asia

 The follow-up are
 Expected to provide valuable observations for GRB field.

Different positions of sites

- To reduce the risk of weather.
- Allow the cover range
 to up Dec~ -40 deg
 Complete multi-band
 - Complete multi-band lightcurves.

EAFON Webpage : http://cosmic.riken.jp/grb/eafon/

EAFON Publications in 2006-2007
Red : Kiso observational results
(1) Multicolor Shallow decay and Chromatic Breaks in the GRB 050319 Optical Afterglow
(2) When do Internal Shocks End and External Shock Begin? Early-Time Broadband Modeling of GRB 051111
(Bulter et al. 2006, ApJ) (3) Very early multicolor observation of the GRB 041006 rebrighting afterglow
(Urata et al. 2007, ApJL) (4) Extensive multiband study of the X-ray rich GRB 050408. A likely off-axis
event with an intense energy injection (A de Uaarte Postiao et al 2007 A&AL)
(5) A multi band study of optically dark GRB 051028
(Urata et al. 2007, FASJ, accepted) (6) Simulataneous Multi-color Observation of the Early Optical Bump of the GRB021004 ofterolow
(Urata et al. 2007, ApJ submitted) (7) Detection of GRB060927 at z=5.47: Implications for the Use of Gamma-Ray Bursts as
Probes of the End of the Dark Ages
(Ruiz Velasco et al. 2007, ApJ submitted) (8) Are Late time X-ray Afterglows of Gamma-ray Bursts Normal ?
(Urata et al. 2007, ApJL in prep.)

GRB 050319 (z=3.24) -- X-ray and optical results An important burst

Huang et al. 2007 ApJ, 628, L93

- The break time is different from that of X-ray afterglow.
- The unusual shallow decay displayed during our observations.
- The shallow decay in both X-ray and optical may have similar origin relate to energy injection.

Serious problem in the standard model

- Shallow decay
- → energy injection
- break should appear at same \rightarrow when energy stop to supply, time in afterglow evolution.
- → chromatic breaks in afterglow observations.
- X-ray (~ 28 days), but in optical Jet break did not be found in

Mechanism of X-ray afterglows and optical afterglows should different

20

Optical emission region is different from that of X-ray.

High-z (z>3) GRB

Totally, there are 25 events @2007.07.10.

including 2nd high-z event using ~1 m telescopes. We have detected 1/5 of high-z events

- Comments Sites GRB N
- 060927 Kiso & Xinglong 2nd high-z event! 5.47
 - 4.048 060206 Lulin
- 3.78 060605 Xinglong
- 3.240 050319 Kiso & Lulin
 - 3.221 060526 Lulin

Different behaviors in both X-ray and optical

R=18.8 mag@15.86h (Lulin)

Summary

- The EAFON works well for GRB optical follow-up observations.
- Our observational results showed
- -- small telescopes have potential for studying cosmological objects.
- -- Detail optical afterglow light curves play an
- important role to understand mechanism of GRBs
- Combine with other well-observations, we found that evolution and "jet break" occur in late time from our energy injection" only occur in early temporal 22 samples.